
C256 – Developer Introduction Notes

Introduction to the C256 System

Hardware
The C256 system uses a 65C816 micro-processor.

System clock is 14MHz.

Power supply required is +12V 1A with a 2.5mm plug.

Keyboard requires a PS/2 connector.

Figure 1 provides several more details about the Rev B board.

Figure 1 - Revision B Board Specification

Contributing to the IDE Development

Git Repositories
• Foenix IDE: https://github.com/Trinity-11/FoenixIDE.git

• C256 Kernel (Rev B): https://github.com/Trinity-11/Kernel

• FMX Kernel (Rev C): https://github.com/Trinity-11/Kernel_FMX

Tools
To modify the Foenix IDE, you will need Visual Studio 2017 Community edition for C#.

Using the Foenix IDE
The Integrated Development Environment consists of a 65816 emulator and a C256 Foenix memory map emulator.

Launching the Application

To start the IDE, double-click on the FoenixIDE icon or using a console, type “FoenixIDE.exe”.

The command-line accepts three parameters:

-h, --hex: load the program into memory for an “Intel Hex” file format;

-r, --run: auto-run the provided binary; and

-i, --irq: disable “break on interrupts” in the CPU window.

-b: board revision “b” or “c”.

If no parameters are specified the application will launch with defaults:

https://github.com/Trinity-11/FoenixIDE.git
https://github.com/Trinity-11/Kernel
https://github.com/Trinity-11/Kernel_FMX

- Program is loaded from ROMS\kernel.hex; if it doesn’t exist, the user is prompted to select one using the

Windows File Dialog;

- Autorun is disabled; and

- Break on Interrupts is enabled.

IDE Windows
The IDE consists of three main windows. The display, the CPU debugger and the memory editor.

Understanding the C256 Foenix
The Foenix IDE currently emulates the C256 Foenix computer Revisions B and C. To switch between the two

modes, click on the Revision selection box on the Toolstip, as shown in Figure 2 below.

Figure 2 - Revision Selection Box

Memory Map
The CPU can access 24-bit worth of addresses.

$FF:0000 - $FF:FFFF Bank $FF

16 MB Address Space

$FE:0000 - $FE:FFFF Bank $FE

$00:0000 - $01:FFFF Bank $01

$00:0000 - $00:FFFF Bank $00

The address space is mapped as follows:

$F8:0000 - $FF:FFFF 512 KB User Flash (if populated)

$F0:0000 - $F7:FFFF 512 KB System Flash

$B0:0000 - $EF:FFFF 4 MB Video RAM

$AF:0000 - $AF:FFFF IO Space

$40:0000 - $AE:FFFF Extension Card

$20:0000 - $3F:FFFF 2 MB RAM (optional in Rev B)

$00:0000 - $1F:FFFF 2 MB RAM

On boot, Gavin copies the first 64KB of the content of System Flash (or User Flash, if present) to Bank $00. The

entire 512KB are copied to address range $18:0000 to $1F:FFFF.

IO Space is mapped to Vicky: $AF:0000 to $AF:DFFF and Beatrix: $AF:E000 to $AF:FFFF.

Gavin – Location $00:0000 to $00:FFFF

Math Co-Processor

The C256 provides a math co-processor to perform long addition, multiplications and divisions of integers. The

FMX version of the board also provides floating-point capabilities.

To perform an operation, you write the little-endian values in the appropriate address locations and the results are

automatically returned in the result addresses.

Integer Multiplications

There are two multiplier locations: $00:0100 and $00:0108. Multiplier 0 is unsigned and Multiplier 1 is signed.

Each operand must be 16-bits, and the result is 32-bits.

Address Name Description

$00:0100 M0_OPERAND_A 16-bit unsigned value

$00:0102 M0_OPERAND_B 16-bit unsigned value

$00:0104 M0_RESULT 32-bit unsigned result of the multiplication of A and B

Address Name Description

$00:0108 M1_OPERAND_A 16-bit signed value

$00:010A M1_OPERAND_B 16-bit signed value

$00:010C M1_RESULT 32-bit signed result of the multiplication of A and B

Integer Divisions

There are two divider locations: $00:0110 and $00:0118. Divider 0 is unsigned and Divider 1 is signed. Each

operand must be 16-bits. The result and remainder are 16-bits also.

Address Name Description

$00:0110 D0_OPERAND_A 16-bit unsigned value for the dividend

$00:0112 D0_OPERAND_B 16-bit unsigned value for the divisor

$00:0114 D0_RESULT 16-bit unsigned result for the quotient

$00:0116 D0_REMAINDER 16-bit unsigned result for the remainder

Address Name Description

$00:0118 D1_OPERAND_A 16-bit signed value for the dividend

$00:011A D1_OPERAND_B 16-bit signed value for the divisor

$00:011C D1_RESULT 16-bit signed result for the quotient

$00:011E D1_ REMAINDER 16-bit signed result for the remainder

Long Signed Additions

There is one long signed adder located at $00:0120. Both operands must be 32-bit signed integers. The result is

also 32-bit signed.

Address Name Description

$00:0120 ADDER32_A 32-bit signed value

$00:0124 ADDER32_B 32-bit signed value

$00:0128 ADDER32_R 32-bit signed result of the addition of A and B

Floating Point Capability

Users can provide input data as fixed precision values (20.12) or IEEE-754 values. All operations inside the Floating

Point processor use IEEE-754 values. Output values can be returned as 20.12 or IEEE-754 values.

Address Name Description

$AF:E200 FP_MATH_CTRL0 Input multiplexer register

$AF:E201 FP_MATH_CTRL1 Output multiplexer register

$AF:E204 FP_MATH_MULT_STAT Multiplication Status (Read-Only)

$AF:E205 FP_MATH_DIV_STAT Division Status (Read-Only)

$AF:E206 FP_MATH_ADD_STAT Addition Status (Read-Only)

$AF:E207 FP_MATH_CONV_STAT Conversion Status (Read-Only)

$AF:E208 FP_MATH_INPUT0 (W)
FP_MATH_OUTPUT_FP (R)

Input Value 0 Little-Endian 4 bytes - FP or Fixed (20.12)

$AF:E20C FP_MATH_INPUT1 (W)
FP_MATH_OUTPUT_FIXED (R)

Input Value 1 Little-Endian 4 bytes - FP or Fixed (20.12)

FP_MATH_CTRL0 ($AF:E200)

7 6 5 4 3 2 1 0

IN1_MUX IN0_MUX ADD_SUB Reserved INPUT1_MUX INPUT0_MUX
00: Input Mux0
01: Input Mux1
10: Mult Out
11: Div Out

00: Input Mux0
01: Input Mux1
10: Mult Out
11: Div Out

0: Subtraction
1: Addition

N/A 0: User Input
1: Convert Fixed to FP

0: User Input
1: Convert Fixed to FP

FP_MATH_CTRL1 ($AF:E201)

7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved Reserved Reserved OUTPUT_MUX
N/A N/A N/A N/A N/A N/A 00: Mult Output

01: Div Output
10: Add/Subtract Output
11: '1'

FP_MATH_MULT_STAT ($AF:E204)

7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved ZERO UDF OVF NAN

FP_MATH_DIV_STAT ($AF:E205)

7 6 5 4 3 2 1 0

Reserved Reserved Reserved DIVBYZERO ZERO UDF OVF NAN

FP_MATH_ADD_STAT ($AF:E206)

7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved ZERO UDF OVF NAN

FP_MATH_CONV_STAT ($AF:E207)

7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved Reserved UDF OVF NAN

Interrupt Controller
Address Name Description

$00:0140 INT_PENDING_REG0 Pending Interrupts Register 0

$00:0141 INT_PENDING_REG1 Pending Interrupts Register 1

$00:0142 INT_PENDING_REG2 Pending Interrupts Register 2

$00:0143 INT_PENDING_REG3 Pending Interrupts Register 3 (FMX only)

$00:0144 INT_POL_REG0 Polarity Set Interrupts Register 0

$00:0145 INT_POL_REG1 Polarity Set Interrupts Register 1

$00:0146 INT_POL_REG2 Polarity Set Interrupts Register 2

$00:0147 INT_POL_REG3 Polarity Set Interrupts Register 3 (FMX only)

$00:0148 INT_EDGE_REG0 Edge Interrupts Register 0

$00:0149 INT_EDGE_REG1 Edge Interrupts Register 1

$00:014A INT_EDGE_REG2 Edge Interrupts Register 2

$00:014B INT_EDGE_REG3 Edge Interrupts Register 3 (FMX only)

$00:014C INT_MASK_REG0 Interrupt Masks Register 0

$00:014D INT_MASK_REG1 Interrupt Masks Register 1

$00:014E INT_MASK_REG2 Interrupt Masks Register 2

$00:014F INT_MASK_REG3 Interrupt Masks Register 3 (FMX only)

Interrupt Register 0 ($00:0140, $00:0144, $00:0148, $00:014C)

7 6 5 4 3 2 1 0

Mouse Floppy Disk RTC Timer 2 Timer 1 Timer 0 SOL SOF

Description

SOF Start of Frame – 60 Frames per Second (FPS)

SOL Start of Line – 60 FPS offset

RTC Clock Alarm, etc..., See the chip spec for more detail for the registers: BQ4802

Interrupt Register 1 ($00:0141, $00:0145, $00:0149, $00:014D)

7 6 5 4 3 2 1 0

SDCARD LPT1 MPU-401 COM1 COM2 Tile Coll Sprite Coll Keyboard

Interrupt Register 2 ($00:0142, $00:0146, $00:014A, $00:014E) – Rev B

7 6 5 4 3 2 1 0

Always 1 Expansion DAC Video DMA Gavin DMA Beatrix OPL2 Left OPL2 Right

Interrupt Register 2 ($00:0142, $00:0146, $00:014A, $00:014E) – Rev C (FMX)

7 6 5 4 3 2 1 0

SD Card Insertion Expansion Gabe Int2 Vicky II Int5 Vicky II Int4 Gabe Int1 Gabe Int0 OPL3

Interrupt Register 3 ($00:0143, $00:0147, $00:014B, $00:014F) – Rev C (FMX) only

7 6 5 4 3 2 1 0

SD Card Insertion Expansion Gabe – TBD TBD TBD HDD IDE IRQ OPM OPN2

Vicky – Location $AF:0000 to $AF:DFFF

Vicky Memory

$AF:0000 - $AF:00FF (Internal Memory) Vicky General Registers

BORDER_COLOR_B = $AF:0005 - when in text mode, this is the border color shown.
BORDER_COLOR_G = $AF:0006
BORDER_COLOR_R = $AF:0007

When in Graphic Mode, if a pixel is "0" then the Background pixel is chosen
BACKGROUND_COLOR_B = $AF:000D
BACKGROUND_COLOR_G = $AF:000E
BACKGROUND_COLOR_R = $AF:000F

$AF:0100 - $AF:013F (Internal Memory) Vicky Tiles Registers

$AF:0140 - $AF:014F (Internal Memory) Vicky Bitmap Registers

$AF:0200 - $AF:03FF (Internal Memory) Vicky Sprites

$AF:0400 - $AF:04FF (Internal Memory) Vicky VDMA

$AF:0800 - $AF:080F Real-time clock (RTC)

Video Direct Memory Access

Memory Address Range reserved: DMA Controller $AF0400 - $AF04FF

VDMA_CONTROL_REG = $AF0400

VDMA Control Register ($AF:0400)

7 6 5 4 3 2 1 0

Start Tfr - - - IRQ Enable Fill 2D Enable

Description

VDMA_CTRL_Enable Enable the VDMA Transfer

VDMA_CTRL_1D_2D 0 - 1D (Linear) Transfer , 1 - 2D (Block) Transfer

VDMA_CTRL_TRF_Fill 0 - Transfer Src -> Dst, 1 - Fill Destination with "Byte2Write"

VDMA_CTRL_Int_Enable Set to 1 to Enable the Generation of Interrupt when the Transfer is over

VDMA_CTRL_Start_TRF Set to 1 To Begin Process, Need to Cleared before, you can start another

VDMA_BYTE_2_WRITE = $AF0401 ; Write Only - Byte to Write in the Fill Function

VDMA_STATUS_REG = $AF0401 ; Read only

VDMA Status Register ($AF:0401) – Read-only

7 6 5 4 3 2 1 0

Tfr In Progress - - - - Invalid Src Addr Invalid Dest Addr Size Error

When Transfer is in Progress, the CPU will not be able to access Video Memory.

VDMA_SRC_ADDY_L = $AF0402 ; Pointer to the Source of the Data to be transferred

VDMA_SRC_ADDY_M = $AF0403 ; This needs to be within Vicky's Range ($00:0000 -

$3F:0000)

VDMA_SRC_ADDY_H = $AF0404

VDMA_DST_ADDY_L = $AF0405 ; Destination Pointer within Vicky's video memory Range

VDMA_DST_ADDY_M = $AF0406 ; ($00:0000 - $3F:0000)

VDMA_DST_ADDY_H = $AF0407

In 1D Transfer Mode, specify how many bytes to transfer. Maximum value is $40:0000 or 4 megabytes.
VDMA_SIZE_L = $AF0408

VDMA_SIZE_M = $AF0409

VDMA_SIZE_H = $AF040A

VDMA_IGNORED = $AF040B

In 2D Transfer Mode, specify the width and height to transfer. Maximum is 65,536 in each direction.
VDMA_X_SIZE_L = $AF0408 ; Maximum Value: 65535

VDMA_X_SIZE_H = $AF0409

VDMA_Y_SIZE_L = $AF040A ; Maximum Value: 65535

VDMA_Y_SIZE_H = $AF040B

VDMA_SRC_STRIDE_L = $AF040C ; Always use an Even Number (The Engine uses Even Ver

of that value)

VDMA_SRC_STRIDE_H = $AF040D ;

VDMA_DST_STRIDE_L = $AF040E ; Always use an Even Number (The Engine uses Even Ver

of that value)

VDMA_DST_STRIDE_H = $AF040F ;

$AF:1000 - $AF:13FF - SUPER IO Devices --- (TOTAL USAGE) ---

// Super IO Details:

// $AF:1060 - $AF:1064 - LOGIC DEVICE 7 - KEYBOARD

// $AF:1100 - $AF:117F - LOGIC DEVICE A - PME (Runtime Registers)

// $AF:1200 - $AF:1200 - LOGIC DEVICE 9 - GAME PORT

// $AF:12F8 - $AF:12FF - LOGIC DEVICE 5 - SERIAL 2

// $AF:1330 - $AF:1331 - LOGIC DEVICE B - MPU-401

// $AF:1378 - $AF:137F - LOGIC DEVICE 3 - PARALLEL PORT

// $AF:13F0 - $AF:13F7 - LOGIC DEVICE 0 - FLOPPY CONTROLLER

// $AF:13F8 - $AF:13FF - LOGIC DEVICE 4 - SERIAL 1

$AF:1F00 - $AF:1F3F (Internal Memory) Vicky Text Mode 16 Color Look-up Table

Foreground Color

$AF:1F40 - $AF:1F7F (Internal Memory) Vicky Text Mode 16 Color Look-up Table

Background Color

$AF:2000 - $AF:23FF (Internal Memory) Graphic Mode LUT0

$AF:2400 - $AF:27FF (Internal Memory) Graphics Mode LUT1

$AF:2800 - $AF:2BFF (Internal Memory) Graphics Mode LUT2

$AF:2C00 - $AF:2FFF (Internal Memory) Graphics Mode LUT3

$AF:4000 - $AF:40FF (External Memory) 256 Bytes GAMMA LUT - RED

$AF:4100 - $AF:41FF (External Memory) 256 Bytes GAMMA LUT - GREEN

$AF:4200 - $AF:42FF (External Memory) 256 Bytes GAMMA LUT – BLUE

FONT_MEMORY_BANK0 = $AF:8000 - $AF:8FFF

FONT_MEMORY_BANK1 = $AF:9000 - $AF:9FFF

Screen Page 0 – Location $AF:A000

Screen Page 0 memory is used to store text characters for display.

One page of text is 128 columns by 64 rows. This adds up to 8 KB of memory of text. C256 does not display the

entire buffer on the screen. Typically, we render 72 characters per row, with 56 rows.

This uses 576 x 448 of the available 640 x 480 resolution. The border size can be
modified or turned off completely.

The display process reads Screen Page 0 and for each character, displays it’s
character set bitmap.

Screen Page 1 – Location $AF:C000

An additional page of 128 x 64 is used to store the colors. Each byte is split into foreground (4bits) and background

(4 bits). The high nibble (bits 7..4) are the foreground and the low nibble (bits 3..0) are the background.

The colors used (the 4 bits) are used to lookup RBG values in two lookup tables (LUT).

The foreground (FG) LUT is located at $AF:1F40 for 64 bytes – only 16 x 3 = 48 bytes are used. The extra byte may

be used for alpha (transparency) later on.

The background (BG) LUT is located at $AF:1F80 for 64 bytes – only 16 x 3 = 48 bytes are used. The extra byte may

be used for alpha (transparency) later on.

The colors are assigned 8-bit blue, 8-bit green, 8-bit red, 8-bit alpha (not used) for each of those colors in Text

Mode.

Example – Color Lookup

Consider the following Foreground and Background Lookup Tables

Foreground Color Lookup Table, starting at address
$AF:1F40

Background Color Lookup Table, starting at address
$AF:1F80

Index Blue Green Red Alpha Color

0 $00 $00 $00 $FF Black

1 $00 $00 $80 $FF Maroon

2 $00 $80 $00 $FF Green

3 $80 $00 $00 $FF Navy

4 $00 $80 $80 $FF Olive

5 $80 $80 $00 $FF Teal

6 $80 $00 $80 $FF Purple

7 $80 $80 $80 $FF Gray

8 $00 $45 $FF $FF Orange

9 $13 $45 $8B $FF Brown

A $00 $00 $20 $FF Dark Red

B $00 $20 $00 $FF Dark Green

C $20 $00 $00 $FF Indigo

D $20 $20 $20 $FF Dark Gray

E $40 $40 $40 $FF Slate Gray

F $FF $FF $FF $FF White

Index Blue Green Red Alpha Color

0 $00 $00 $00 $FF Black

1 $00 $00 $80 $FF Maroon

2 $00 $80 $00 $FF Green

3 $80 $00 $00 $FF Navy

4 $00 $20 $20 $FF ??

5 $20 $20 $00 $FF ??

6 $20 $00 $20 $FF ??

7 $20 $20 $20 $FF ??

8 $1E $69 $D2 $FF

9 $13 $45 $8B $FF Brown

A $00 $00 $20 $FF Dark Red

B $00 $20 $00 $FF Dark Green

C $40 $00 $00 $FF Blue

D $10 $10 $10 $FF Midnight Gray

E $40 $40 $40 $FF Slate Gray

F $FF $FF $FF $FF
White

If a character in Screen Page 1 is $ED (the default text color combination), then the foreground color index is E and

the background color index is D. Looking up the index for E will make the foreground “Slate Gray” and the

background “Midnight Gray”. The image below shows this color combination in text.

Text Gamma Lookup Table

The Gamma lookup table is used to adjust the color between different display devices (such as DVI versus VGA).

Each of the red, green and blue can be corrected. Each table consists of 256 values.

GAMMA_B_LUT_PTR = $AF:4000

GAMMA_G_LUT_PTR = $AF:4100

GAMMA_R_LUT_PTR = $AF:4200

Gamma can be enabled or disabled.

Master Control Register

The Master Control Register (MCR) is used to enable/disable various video mode. The MCR is located at address

$AF:0000-1. Bits 8 and 9 are only available to Rev C of the Foenix boards (aka FMX).

MCR $AF:0001 MCR ($AF:0000)

9 8 7 6 5 4 3 2 1 0

Pixel Doubling Pixel Clock Disable
Vid

Gamma Sprite Tilemap Bitmap Graph
Mode

Text
Overlay

Text
Mode

MCR Bit MCR Name Description

0 Mstr_Ctrl_Text_Mode_En Enable the Text Mode

1 Mstr_Ctrl_Text_Overlay Enable the Overlay of the text mode on top of Graphic Mode (the
Background Color is ignored)

2 Mstr_Ctrl_Graph_Mode_En Enable the Graphic Mode

3 Mstr_Ctrl_Bitmap_En Enable the Bitmap Module in Vicky

4 Mstr_Ctrl_TileMap_En Enable the Tile Module in Vicky

5 Mstr_Ctrl_Sprite_En Enable the Sprite Module in Vicky

6 Mstr_Ctrl_GAMMA_En Enable the GAMMA correction - The Analog and DVI have different
color value, the GAMMA is great to correct the difference.
NOTE: This could also be used for fade-in and out.

7 Mstr_Ctrl_Disable_Vid This bit disables the Scanning of the Video Memory, hence giving
100% bandwidth to the CPU to access graphic data.
NOTE: In this case the Border color or the background is displayed
on the screen (I can't remember) to be advised

8 Mstr Ctrl_Pixel_Clock 0: 25MHz – 640 x 480 maximum resolution
1: 40Mhz – 800 x 600 maximum resolution

9 Mstr_Ctrl_Pixel_Doubling Enable Pixel Doubling (yielding resolutions of 320 x 240 if bit 8 is 0,
and 400 x 300 if bit is 1).

Displaying Graphics

C256 has 4 MB of Video RAM available, starting at $B0:0000 and ending at $EF:FFFF.

The order in which images are drawn are:

• Layer 0 - Sprite Layer 0 - Foreground (Closest to the screen)

• Layer 1 - Bitmap Layer 0

• Layer 2 - Sprite Layer 1

• Layer 3 - TileMap Layer 0

• Layer 4 - Sprite Layer 2

• Layer 5 - TileMap Layer 1

• Layer 6 - Sprite Layer 3

• Layer 7 - TileMap Layer 2

• Layer 8 - Sprite Layer 4

• Layer 9 - TileMap Layer 3

• Layer 10 - Sprite Layer 5

• Layer 11 - Bitmap Layer 1

• Layer 12 - Sprite Layer 6 - Background (Farthest from the Screen)

Bitmaps

Once the Bitmap bit is set in the MCR, Vicky will read the Bitmap Control Register(s). Rev B can only display a

single bitmap. Rev C can display two bitmaps and has two registers.

The Bitmap Control Register is shown below.

Bitmap Control Register ($AF:0140) – Rev B

7 .. 4 3 .. 1 0

Reserved LUT Enable

Bitmap Control Register ($AF:0100 and $AF:0108) – Rev C

7 .. 4 3 .. 1 0

Reserved LUT Enable

BCR Bit BCR Name Description

0 Enabled Enable the bitmap

1 .. 3 LUT Lookup Table Index 0 to 7

4 .. 7 Reserved Reserved

The address pointer of the bitmap in the Video RAM is located at addresses $AF:0141 to $AF:0143. The address

stored must be offset by $B0:0000. As an example, if the bitmap data is stored in at address $B1:4000 in memory,

the address pointer must be $01:4000.

The bitmap width is saved in the word $AF:0144 to $AF:0145.

The bitmap height is saved in the word $AF:0146 to $AF:0147.

Tiles

Once the Tile bit is set in the MCR, Vicky will retrieve the Tile Control Register at addresses $AF:0100, $AF:0108,

$AF:0110 and $AF:0118 to determine if a tileset should be displayed. There can be four tilesets at any given time

in the display.

The tilemap contain Width * Height 16-bit values

// Active_Tile_Data[7:0] -> Tile Number

// Active_Tile_Data[10:8] -> Tile Attributes // Tile Set

// Active_Tile_Data[13:11] -> Tile Attributes // Tile LUT

// Active_Tile_Data[14] -> TBD

// Active_Tile_Data[15] -> TBD

The Tile Control Registers are shown below.

Tile Control Register ($AF:0100, $AF:0108, $AF:0110, $AF:0118)

7 6 .. 4 3 .. 1 0

Tile Striding Reserved LUT Enable

TCR Bit TCR Name Description

0 Enabled Enable the bitmap

1 .. 3 LUT Lookup Table Index 0 to 7

4 .. 6 Reserved Reserved

7 Tile Striding 0: sequential, 1: 256 x 256 Tile sheet striding

Each tile has its own control register, video address pointer, X and Y stride.

 Tile 0 Tile 1 Tile 2 Tile 3

Tile Control Register $AF:0100 $AF:0108 $AF:0110 $AF:0118

Tile Start Address $AF:0101 .. $AF:0103 $AF:0109 .. $AF:010B $AF:0111 .. $AF:0113 $AF:0119 .. $AF:011B

Tile Map X Stride $AF:0104 .. $AF:0105 $AF:010C .. $AF:010E $AF:0114 .. $AF:0115 $AF:011C .. $AF:011E

Tile Map Y Stride $AF:0106 .. $AF:0107 $AF:010E .. $AF:010F $AF:0116 .. $AF:0117 $AF:011E .. $AF:011F

Tile maps are stored at addresses $AF:5000, $AF:5800, $AF:6000 and $AF:6800.

Sprites

Once the Sprite bit is set in the MCR, Vicky will display sprites in the appropriate layer. There can be 32 sprites

displayed for each screen refresh.

The Sprite Control Registers are shown below.

Sprite Control Register ($AF:0200 to $AF:02F8, offset by 8 bytes)

7 6 .. 4 3 .. 1 0

Reserved Layer LUT Enable

Each sprite has a Control Register, a video memory address, and X and Y locations.

Beatrix

// $AF:E400..$AF:E4FF // SID (Still to be defined) Not Implemented yet

// $AF:E500..$AF:E5FF // OPL2 - Left Side

// $AF:E600..$AF:E6FF // OPL2 - Right Side

// $AF:E700..$AF:E7FF // OPL2 - Both Side (Write Sequence Only)

// $AF:E800..$AF:E807 // Joystick + AD Channel + SD Controller

// $AF:E820..$AF:E823 // CODEC Register

// $AF:E810..$AF:E81F //SD Card Stat

Joystick Ports

The C256 Foenix provides 4 joystick ports, located in front of the machine. The 9-pin connectors are compatible

with the standard Atari/Commodore joysticks. Joystick ports are number from right to left, starting near the Reset

button.

JOYSTICK0 = $AF:E800 ;(R) Joystick 0 - J7 (Next to Buzzer)
JOYSTICK1 = $AF:E801 ;(R) Joystick 1 - J8
JOYSTICK2 = $AF:E802 ;(R) Joystick 2 - J9
JOYSTICK3 = $AF:E803 ;(R) Joystick 3 - J10 (next to SD Card)

The joysticks do not generate interrupts. Polling ports at a regular interval, say with the SOF interrupt is

recommended.

The joystick register has a value at rest of $9F. The bits are set to zero when a switch is closed.

Joystick Register ($AF:E800, $AF: E801, $AF: E802, $AF: E803)

7 6 5 4 3 2 1 0

Button N/A N/A N/A Left Right Down Up

Note: This feature is not implemented in the Foenix IDE yet.

Dip switch Ports
DIPSWITCH = $AF:E804 ;(R) $AFE804...$AFE807

Note: This feature is not implemented in the Foenix IDE yet.

SD Card
; SD Card CH376S Port

SDCARD_DATA = $AF:E808 ;(R/W) SDCARD (CH376S) Data PORT_A (A0 = 0)

SDCARD_CMD = $AF:E809 ;(R/W) SDCARD (CH376S) CMD/STATUS Port (A0 = 1)

; SD Card Card Presence / Write Protect Status Reg

SDCARD_STAT = $AF:E810 ;(R) SDCARD (Bit[0] = CD, Bit[1] = WP)

; Audio WM8776 CODEC Control Interface (Write Only)

CODEC_DATA_LO = $AF:E820 ;(W) LSB of Add/Data Reg to Control CODEC See WM8776 Spec

CODEC_DATA_HI = $AF:E821 ;(W) MSB od Add/Data Reg to Control CODEC See WM8776 Spec

CODEC_WR_CTRL = $AF:E822 ;(W) Bit[0] = 1 -> Start Writing the CODEC Control Register

Note: This feature is not implemented in the Foenix IDE yet.

Communicating with the Machine over the USB Port
The machine has a USB port that allows for easy transfer of data from the C256 IDE directly to the machine.

When sending commands to the machine, an 8-byte array is the minimum length.

• Byte 0: Header = $55

• Byte 1: Command

• Byte 2: Destination Address (H)

• Byte 3: Destination Address (M)

• Byte 4: Destination Address (L)

• Byte 5: Destination Size (H)

• Byte 6: Destination Size (L)

• Byte 7: Checksum – XOR all the previous bytes

The Destination Address and Destination Size only needs to be specified if writing to memory.

Read from Memory Command ($00)

Write to Memory Command ($01)

Program Flash Command ($10)
The command "Program Flash", you need to supply the Pointer in RAM of where the Flash image will be. The

overhead for this one is even longer, each write byte in Flash takes about 20us. So 512K x 20us = 10Sec. So, in

theory, you should have an answer to that command 10 second after sending it, indicating that it is now complete.

Erase Flash Command ($11)
Now, the Command "Erase Flash" doesn't have any specific parameters, but the command needs to follow the

same protocol as "Stop CPU" or "Start CPU". The overhead to receive an answer from that command is around

100ms. So, make sure the serial interface can wait that long.

Set Debug Mode Command ($80)

Exit Debug Mode Command ($81)

Get Revision ($FE)
Use this to receive the Debug core version, if you want to make the difference between RevB2 and other revisions.

Value returned:

• $00 - RevB2

• $01 - Everything at RevC4A and after (or RevC4 with more features)

Sample Code
Use the VDMA in linear mode to transfer data.

Linear Mode VDMA Transfer
SETUP_VDMA_FOR_TESTING_1D
 setas
 LDA #$01 ; Start Transfer
 STA @lVDMA_CONTROL_REG

 LDA #$FE
 STA @lVDMA_SIZE_L
 LDA #$9F
 STA @lVDMA_SIZE_M
 LDA #$00
 STA @lVDMA_SIZE_H

 LDA #$64
 STA @lVDMA_DST_ADDY_L
 LDA #$84
 STA @lVDMA_DST_ADDY_M
 LDA #$03
 STA @lVDMA_DST_ADDY_H

 LDA #$55
 STA @lVDMA_BYTE_2_WRITE

 LDA #$85 ; Start Transfer
 STA @lVDMA_CONTROL_REG
 LDA @lVDMA_STATUS_REG
 RTS

Block Mode VDMA Transfer

SETUP_VDMA_FOR_TESTING_2D
 setas

VDMA_WAIT_TF
 ; Wait for the Previous Transfer to be Finished

 LDA @lVDMA_STATUS_REG
 AND #VDMA_STAT_VDMA_IPS
 CMP #VDMA_STAT_VDMA_IPS
 BEQ VDMA_WAIT_TF

 LDA #$01 ; Start Transfer
 STA @lVDMA_CONTROL_REG

 LDA #200
 STA @lVDMA_X_SIZE_L
 LDA #00
 STA @lVDMA_X_SIZE_H

 LDA #64
 STA @lVDMA_Y_SIZE_L
 LDA #00
 STA @lVDMA_Y_SIZE_H

 LDA #$60
 STA @lVDMA_DST_ADDY_L
 LDA #$90
 STA @lVDMA_DST_ADDY_M
 LDA #$01
 STA @lVDMA_DST_ADDY_H

 LDA #$80
 STA @lVDMA_DST_STRIDE_L
 LDA #$02
 STA @lVDMA_DST_STRIDE_H

 LDA #$F9
 STA @lVDMA_BYTE_2_WRITE

 LDA #$87 ; Start Transfer
 STA @lVDMA_CONTROL_REG
 LDA @lVDMA_STATUS_REG
 RTS

Clear Screen with VDMA
Code Example of Bitmap ClearScreen with the 2D Mode that happens to work better than the 1D Mode:

CLEAR_BITMAP
 setas

CLR_SCREEN_CHECK_NO_ACTIVE_DMA
 ; Wait for the Previous Transfer to be Finished
 LDA @lVDMA_STATUS_REG
 AND #VDMA_STAT_VDMA_IPS
 CMP #VDMA_STAT_VDMA_IPS
 BEQ CLR_SCREEN_CHECK_NO_ACTIVE_DMA

 LDA #$01 ; Enable VDMA Block
 STA @lVDMA_CONTROL_REG

 LDA #$80
 STA @lVDMA_X_SIZE_L
 LDA #$02
 STA @lVDMA_X_SIZE_H

 LDA #$E0
 STA @lVDMA_Y_SIZE_L
 LDA #$01
 STA @lVDMA_Y_SIZE_H

 LDA #$00

 STA @lVDMA_DST_ADDY_L
 LDA #$00
 STA @lVDMA_DST_ADDY_M
 LDA #$00
 STA @lVDMA_DST_ADDY_H

 LDA #$80
 STA @lVDMA_DST_STRIDE_L
 LDA #$02
 STA @lVDMA_DST_STRIDE_H

 LDA #$00
 STA @lVDMA_BYTE_2_WRITE

 LDA #$87 ; Start Transfer
 STA @lVDMA_CONTROL_REG
 LDA @lVDMA_STATUS_REG
 RTS

Start of Line Interrupt
Setting up of the SOL:

 LDA #$F0 ; <- Video Line Value
 STA @lVKY_LINE0_CMP_VALUE_LO
 LDA #$01 ; Enable Line Interrupt
 STA @lVKY_LINE_IRQ_CTRL_REG

Servicing the interrupt:

SOL_INTERRUPT setas
 LDA @lINT_PENDING_REG0
 AND #FNX0_INT01_SOL
 STA @lINT_PENDING_REG0
 ; Your Code here
 LDA #$00
 STA @lBACKGROUND_COLOR_B
 RTL

Interrupt Handler

IRQ_HANDLER
 setas ; Set 8bits
 .
 .
 .
SERVICE_NEXT_IRQ1
 ; Start of Frame Interrupt
 LDA @lINT_PENDING_REG0
 AND #FNX0_INT01_SOL
 CMP #FNX0_INT01_SOL
 BNE SERVICE_NEXT_IRQ6
 ; Start of Frame Interrupt
 JSL SOL_INTERRUPT
 BRA EXIT_IRQ_HANDLE
 .
 .
 .
SERVICE_NEXT_IRQ6
 .
 .
 .
EXIT_IRQ_HANDLE
 RTI

