C256 — Developer Introduction Notes

C256 FOENIX
PROJECT

Introduction to the C256 System

Hardware
The C256 system uses a 65C816 micro-processor.

System clock is 14MHz.
Power supply required is +12V 1A with a 2.5mm plug.
Keyboard requires a PS/2 connector.

Figure 1 provides several more details about the Rev B board.

FINALxnost Specifications

CPU: 65C8I16 @ 14.318Mhz

Memory: Si2KBytes Flash - System
S1I2KBytes Flash - User (Socket Empty)
2MBytes - System RAM
aMVBytes - Video RAM

Figure 1 - Revision B Board Specification

Contributing to the IDE Development

Git Repositories
e Foenix IDE: https://github.com/Trinity-11/FoenixIDE.git
e (256 Kernel (Rev B): https://github.com/Trinity-11/Kernel
e FMX Kernel (Rev C): https://qgithub.com/Trinity-11/Kernel_FMX

Tools
To modify the Foenix IDE, you will need Visual Studio 2017 Community edition for C#.

Using the Foenix IDE

The Integrated Development Environment consists of a 65816 emulator and a C256 Foenix memory map emulator.

Launching the Application

To start the IDE, double-click on the FoenixIDE icon or using a console, type “FoenixIDE.exe”.
The command-line accepts three parameters:

-h, --hex: load the program into memory for an “Intel Hex” file format;

-r, --run: auto-run the provided binary; and

-i, --irq: disable “break on interrupts” in the CPU window.

-b: board revision “b” or “c”.

If no parameters are specified the application will launch with defaults:

https://github.com/Trinity-11/FoenixIDE.git
https://github.com/Trinity-11/Kernel
https://github.com/Trinity-11/Kernel_FMX

- Program is loaded from ROMS\kernel.hex; if it doesn’t exist, the user is prompted to select one using the
Windows File Dialog;

- Autorun is disabled; and

- Break on Interrupts is enabled.

IDE Windows

The IDE consists of three main windows. The display, the CPU debugger and the memory editor.

Understanding the C256 Foenix

The Foenix IDE currently emulates the C256 Foenix computer Revisions B and C. To switch between the two
modes, click on the Revision selection box on the Toolstip, as shown in Figure 2 below.

(Trer < Ellalelelelalalale]

Figure 2 - Revision Selection Box

Memory Map

The CPU can access 24-bit worth of addresses.

Foenix Global Memory Model

Empty
Footprint
On PCB

USER FLASH

Expansion SYSTEM
EMPTY REGION RAM** (2M) RAM (2Mm)
S:($B0:0000] S:[$20:0000)] E:[$SAE:FFFF] S:[$20:0000] S:[$00:0000)
E:[$EFFFFF] €[$3FFFFF] € [$IF-FFFF]

TR T L
Tl BT T
T T T
Tl T i
T

u.[: g
0f0

B8 :
Of[xo 8
oy 0

L g
il 8 b

[sFF:FFFF]
[$00:0000]

16M WDC-65C8I16 Accessible Region

$FF:0000 - $FF:FFFF | Bank $FF
$FE:0000 - SFE:FFFF__ | Bank $FE

16 MB Address Space

$00:0000 - SO1:FFFF Bank $01
$00:0000 - S00:FFFF Bank $00

The address space is mapped as follows:

SF8:0000 - SFF:FFFF 512 KB User Flash (if populated)
SF0:0000 - SF7:FFFF 512 KB System Flash

SB0:0000 - SEF:FFFF 4 MB Video RAM

SAF:0000 - SAF:FFFF 10 Space

$40:0000 - SAE:FFFF Extension Card

$20:0000 - $3F:FFFF 2 MB RAM (optional in Rev B)
$00:0000 - S1F:FFFF 2 MB RAM

On boot, Gavin copies the first 64KB of the content of System Flash (or User Flash, if present) to Bank $00. The
entire 512KB are copied to address range $18:0000 to S1F:FFFF.

10 Space is mapped to Vicky: SAF:0000 to SAF:DFFF and Beatrix: SAF:EQ00 to SAF:FFFF.

Gavin — Location $S00:0000 to SO0:FFFF

GAVIN Memory Mapped IO

2one: [$00:0000] - [$00:FFFF] (not to scale)

SDMA Interrupt Math Page Zero
Controller Processor

[soo:cnao 500:0140} [suo:moo [$00:0000)

S00:019F, $00:015F, $00:012F, [$00:00FF]

SYSTEM RAM (Static RAM)

[$00:01FF)
[$00:0000)]

Math Co-Processor
The C256 provides a math co-processor to perform long addition, multiplications and divisions of integers. The
FMX version of the board also provides floating-point capabilities.

To perform an operation, you write the little-endian values in the appropriate address locations and the results are
automatically returned in the result addresses.

Integer Multiplications
There are two multiplier locations: $00:0100 and $00:0108. Multiplier 0 is unsigned and Multiplier 1 is signed.
Each operand must be 16-bits, and the result is 32-bits.

Address Name Description

$00:0100 MO_OPERAND_A 16-bit unsigned value

$00:0102 MO_OPERAND_B 16-bit unsigned value

$00:0104 MO_RESULT 32-bit unsigned result of the multiplication of A and B
Address Name Description

$00:0108 M1_OPERAND_A 16-bit signed value

$00:010A M1_OPERAND_B 16-bit signed value

$00:010C M1_RESULT 32-bit signed result of the multiplication of A and B

Integer Divisions
There are two divider locations: $00:0110 and $00:0118. Divider 0 is unsigned and Divider 1 is signed. Each
operand must be 16-bits. The result and remainder are 16-bits also.

Address Name Description

$00:0110 DO_OPERAND_A 16-bit unsigned value for the dividend
$00:0112 DO_OPERAND_B 16-bit unsigned value for the divisor
$00:0114 DO_RESULT 16-bit unsigned result for the quotient
$00:0116 DO_REMAINDER 16-bit unsigned result for the remainder
Address Name Description

$00:0118 D1_OPERAND_A 16-bit signed value for the dividend
$00:011A D1_OPERAND_B 16-bit signed value for the divisor
$00:011C D1_RESULT 16-bit signed result for the quotient
$00:011E D1_ REMAINDER 16-bit signed result for the remainder

Long Signed Additions

There is one long signed adder located at $00:0120. Both operands must be 32-bit signed integers. The result is
also 32-bit signed.

Address Name Description

$00:0120 ADDER32_A 32-bit signed value

$00:0124 ADDER32_B 32-bit signed value

$00:0128 ADDER32_R 32-bit signed result of the addition of A and B

Floating Point Capability
Users can provide input data as fixed precision values (20.12) or IEEE-754 values. All operations inside the Floating
Point processor use IEEE-754 values. Output values can be returned as 20.12 or IEEE-754 values.

Address Name Description

SAF:E200 FP_MATH_CTRLO Input multiplexer register

SAF:E201 FP_MATH_CTRL1 Output multiplexer register

SAF:E204 FP_MATH_MULT_STAT Multiplication Status (Read-Only)

SAF:E205 FP_MATH_DIV_STAT Division Status (Read-Only)

SAF:E206 FP_MATH_ADD_STAT Addition Status (Read-Only)

SAF:E207 FP_MATH_CONV_STAT Conversion Status (Read-Only)

SAF:E208 FP_MATH_INPUTO (W) Input Value 0 Little-Endian 4 bytes - FP or Fixed (20.12)
FP_MATH_OUTPUT_FP (R)

SAF:E20C FP_MATH_INPUT1 (W) Input Value 1 Little-Endian 4 bytes - FP or Fixed (20.12)
FP_MATH_OUTPUT_FIXED (R)

INO_MUX

INPUTO_MUX

ConverterO
{20.12)
Fixed to Float

e

é

FP
Add/Sub

User Input0
User Inputl

IN1_MUX

Converterl
(20.12)
Fixed to Float

INPUT1_MUX
FP Division
Register

Converter

User Output
FP
(20.12)

User Output Float to Fixed
Fixed (20.12)

QUTPUT_MUX

FP_MATH_CTRLO ($AF:E200)

7 6 5 4 3 2 1 0
IN1_MUX INO_MUX ADD_SUB | Reserved INPUT1_MUX INPUTO_MUX
00: Input Mux0 00: Input Mux0 0: Subtraction N/A 0: User Input 0: User Input
01: Input Mux1 01: Input Mux1 1: Addition 1: Convert Fixed to FP | 1: Convert Fixed to FP
10: Mult Out 10: Mult Out
11: Div Out 11: Div Out
FP_MATH_CTRL1 ($AF:E201)
7 6 5 4 3 2 1 0
Reserved | Reserved | Reserved | Reserved | Reserved Reserved OUTPUT_MUX
N/A N/A N/A N/A N/A N/A 00: Mult Output

01: Div Output
10: Add/Subtract Output
11:'1'

FP_MATH_MULT

_STAT ($AF:E204)

7 6 5 4 3 2 1 0
Reserved Reserved Reserved Reserved ZERO UDF OVF NAN
FP_MATH_DIV_STAT (SAF:E205
7 6 5 4 3 2 1 0
Reserved Reserved Reserved DIVBYZERO ZERO UDF OVF NAN
FP_MATH_ADD_STAT ($AF:E206)
7 6 5 4 3 2 1 0
Reserved Reserved Reserved Reserved ZERO UDF OVF NAN
FP_MATH_CONV_STAT ($SAF:E207)
7 6 5 4 3 2 1 0
Reserved Reserved Reserved Reserved Reserved UDF OVF NAN

Interrupt Controller

Address Name Description
$00:0140 INT_PENDING_REGO | Pending Interrupts Register 0
$00:0141 INT_PENDING_REG1 | Pending Interrupts Register 1
$00:0142 INT_PENDING_REG2 | Pending Interrupts Register 2
$00:0143 INT_PENDING_REG3 | Pending Interrupts Register 3 (FMX only)
$00:0144 INT_POL_REGO Polarity Set Interrupts Register O
$00:0145 INT_POL_REG1 Polarity Set Interrupts Register 1
$00:0146 INT_POL_REG2 Polarity Set Interrupts Register 2
$00:0147 INT_POL_REG3 Polarity Set Interrupts Register 3 (FMX only)
$00:0148 INT_EDGE_REGO Edge Interrupts Register 0
$00:0149 INT_EDGE_REG1 Edge Interrupts Register 1
S00:014A INT_EDGE_REG2 Edge Interrupts Register 2
$00:014B INT_EDGE_REG3 Edge Interrupts Register 3 (FMX only)
$00:014C INT_MASK_REGO Interrupt Masks Register 0
$00:014D INT_MASK_REG1 Interrupt Masks Register 1
S00:014E INT_MASK_REG2 Interrupt Masks Register 2
$00:014F INT_MASK_REG3 Interrupt Masks Register 3 (FMX only)
Interrupt Register 0 ($00:0140, $00:0144, $00:0148, $00:014C)
7 6 5 4 3 2 1 0
Mouse Floppy Disk RTC Timer 2 Timer 1 Timer O SOL SOF
Description
SOF Start of Frame — 60 Frames per Second (FPS)
SOL Start of Line — 60 FPS offset
RTC Clock Alarm, etc..., See the chip spec for more detail for the registers: BQ4802
C256 Foenix VICKY Display Arrangement
SOF
SOL

Hblank
VICKY 640 x 480

Processing

Interrupt Register 1 ($00:0141, $00:0145, $00:0149, $00:014D)

7 6 5 4 3 2 1 0
SDCARD LPT1 MPU-401 com1 com2 Tile Coll Sprite Coll Keyboard

Interrupt Register 2 ($00:0142, $00:0146, $00:014A, $00:014E) — Rev B
7 6 5 4 3 p 1 0
Always 1 Expansion DAC Video DMA Gavin DMA Beatrix OPL2 Left OPL2 Right

Interrupt Register 2 ($00:0142, $00:0146, $00:014A, $00:014E) — Rev C (FMX)
7 6 5 4 3 p 1 0
SD Card Insertion | Expansion | Gabe Int2 Vicky Il Int5 Vicky Il Int4 Gabe Intl Gabe Int0 OPL3

Interrupt Register 3 ($00:0143, $00:0147, $00:014B, $00:014F) — Rev C (FMX) only
7 6 5 4 3 p 1 0
SD Card Insertion | Expansion Gabe - TBD TBD TBD HDD IDE IRQ OPM OPN2

Vicky — Location SAF:0000 to SAF:DFFF

VICKY Memory Mapped IO

Z2one: [$AF:0000] - [$AF:DFFF] (not to scale)

:

~16M WDC-65CBI6 Accessible Region - Page [$AF] v

Vicky Memory

SAF:0000 - SAF:00FF (Internal Memory) Vicky General Registers
BORDER_COLOR_B = SAF:0005 - when in text mode, this is the border color shown.
BORDER_COLOR_G = SAF:0006
BORDER_COLOR_R = SAF:0007

When in Graphic Mode, if a pixel is "0" then the Background pixel is chosen
BACKGROUND_COLOR_B = SAF:000D
BACKGROUND_COLOR_G = SAF:000E
BACKGROUND_COLOR_R = $SAF:000F

SAF:0100 - SAF:013F (Internal Memory) Vicky Tiles Registers

Text Memory
TILE MAPS
Gamma LUT
Graph Color LUT
Text Color LUT
Sprites Reg
Bitmap Reg

Tiles Reg
General Reg

¢
g
§
2
8
g
§

[$AF:DFFF)
[sAF:0000)]

SAF:0140 - SAF:014F (Internal Memory) Vicky Bitmap Registers

SAF:0200 - SAF:03FF (Internal Memory) Vicky Sprites

SAF:0400 - SAF:04FF (Internal Memory) Vicky VDMA

SAF:0800 - SAF:080F Real-time clock (RTC)

Video Direct Memory Access
Memory Address Range reserved: DMA Controller SAF0400 - SAFO4FF

VDMA CONTROL_REG = SAF0400
VDMA Control Register (SAF:0400)
7 6 5 4 3 2 1 0
Start Tfr - - - IRQ Enable Fill 2D Enable

Description

VDMA_CTRL_Enable Enable the VDMA Transfer

VDMA_CTRL_1D_2D 0 - 1D (Linear) Transfer, 1 - 2D (Block) Transfer

VDMA_CTRL_TRF_Fill 0 - Transfer Src -> Dst, 1 - Fill Destination with "Byte2Write"

VDMA_CTRL_Int_Enable Set to 1 to Enable the Generation of Interrupt when the Transfer is over

VDMA_CTRL_Start_TRF Set to 1 To Begin Process, Need to Cleared before, you can start another

VDMA BYTE 2 WRITE
VDMA STATUS_REG

SAF0401 ; Write Only - Byte to Write in the Fill Function
SAF0401 ; Read only

VDMA Status Register (SAF:0401) — Read-only
7 6 5 4 3 2 1 0
Tfr In Progress - - - - Invalid Src Addr Invalid Dest Addr Size Error

When Transfer is in Progress, the CPU will not be able to access Video Memory.

VDMA SRC_ADDY L = SAF0402 ; Pointer to the Source of the Data to be transferred
VDMA SRC_ADDY M SAF0403 ; This needs to be within Vicky's Range ($00:0000 -
$3F:0000)

VDMA SRC_ADDY H

SAF0404

VDMA DST ADDY L SAF0405 ; Destination Pointer within Vicky's video memory Range
VDMA DST ADDY M = SAF0406 ; ($00:0000 - $3F:0000)
VDMA DST ADDY H = $SAF0407

In 1D Transfer Mode, specify how many bytes to transfer. Maximum value is $40:0000 or 4 megabytes.
VDMA SIZE L = SAF0408

VDMA SIZE M = $AF0409
VDMA SIZE H = $AF040A
VDMA_IGNORED = SAF040B

In 2D Transfer Mode, speC|fy the width and height to transfer. Maximum is 65,536 in each direction.

VDMA X SIZE L = $AF0408 ; Maximum Value: 65535

VDMA X SIZE H = $AF0409

VDMA Y SIZE L = $AF040A ; Maximum Value: 65535

VDMA Y SIZE H = $AF040B

VDMA SRC STRIDE L = SAF040C ; Always use an Even Number (The Engine uses Even Ver

of that wvalue)
VDMA SRC STRIDE H = $AF040D ;

VDMA DST STRIDE L
of that wvalue)
VDMA DST STRIDE H = $AF040F ;

SAF040E ; Always use an Even Number (The Engine uses Even Ver

SAF:1000 - SAF:13FF - SUPER 10 Devices --- (TOTAL USAGE) ---

// Super 10 Details:

// SAF:1060 - SAF:1064 - LOGIC DEVICE 7 - KEYBOARD

// SAF:1100 - SAF:117F - LOGIC DEVICE A - PME (Runtime Registers)
// SAF:1200 - SAF:1200 - LOGIC DEVICE 9 - GAME PORT

// SAF:12F8 - SAF:12FF - LOGIC DEVICE 5 - SERIAL 2

// SAF:1330 - SAF:1331 - LOGIC DEVICE B - MPU-401

// SAF:1378 - SAF:137F - LOGIC DEVICE 3 - PARALLEL PORT

// SAF:13F0 - SAF:13F7 - LOGIC DEVICE O - FLOPPY CONTROLLER

// SAF:13F8 - SAF:13FF - LOGIC DEVICE 4 - SERIAL 1

SAF:1F00 - S$AF:1F3F (Internal Memory) Vicky Text Mode 16 Color Look-up Table
Foreground Color

SAF:1F40 - SAF:1F7F (Internal Memory) Vicky Text Mode 16 Color Look-up Table
Background Color
SAF:2000 - SAF:23FF
SAF:2400 - S$AF:27FF (Internal Memory) Graphics Mode LUT1
SAF:2800 - S$AF:2BFF (Internal Memory) Graphics Mode LUT2

() Graphic Mode LUTO
()
()
SAF:2C00 - S$SAF:2FFF (Internal Memory) Graphics Mode LUT3
()
()
()

Internal Memory

SAF:4000 - S$AF:40FF (External Memory) 256 Bytes GAMMA LUT - RED
SAF:4100 - SAF:41FF (External Memory) 256 Bytes GAMMA LUT - GREEN
SAF:4200 - SAF:42FF (External Memory) 256 Bytes GAMMA LUT - BLUE

FONT_MEMORY_BANKO = SAF:8000 - SAF:8FFF
FONT_MEMORY_BANK1 = SAF:9000 - SAF:9FFF

Screen Page 0 — Location SAF:A000
Screen Page 0 memory is used to store text characters for display.

One page of text is 128 columns by 64 rows. This adds up to 8 KB of memory of text. C256 does not display the
entire buffer on the screen. Typically, we render 72 characters per row, with 56 rows.

This uses 576 x 448 of the available 640 x 480 resolution. The border size can be
modified or turned off completely.

The display process reads Screen Page 0 and for each character, displays it’s
character set bitmap.

Screen Page 1 — Location SAF:C000
An additional page of 128 x 64 is used to store the colors. Each byte is split into foreground (4bits) and background
(4 bits). The high nibble (bits 7..4) are the foreground and the low nibble (bits 3..0) are the background.

The colors used (the 4 bits) are used to lookup RBG values in two lookup tables (LUT).

The foreground (FG) LUT is located at SAF:1F40 for 64 bytes — only 16 x 3 = 48 bytes are used. The extra byte may
be used for alpha (transparency) later on.

The background (BG) LUT is located at SAF:1F80 for 64 bytes —only 16 x 3 = 48 bytes are used. The extra byte may
be used for alpha (transparency) later on.

The colors are assigned 8-bit blue, 8-bit green, 8-bit red, 8-bit alpha (not used) for each of those colors in Text
Mode.

Example — Color Lookup
Consider the following Foreground and Background Lookup Tables

Foreground Color Lookup Table, starting at address Background Color Lookup Table, starting at address
SAF:1F40 SAF:1F80

Index | Blue Green Red Alpha | Color Index | Blue Green Red Alpha | Color

0 $00 | $00 500 | SFF | plack IR 0 $00 | $00 500 [SFF | okl

1 500 | $00 $80 | SFF | maroon I 1 $00 | $00 $80 | SFE | varoon

2 $00 $80 $00 SFF | Green [| 2 500 580 500 SFF Green.

3 $80 $00 $00 SFF Navy. 3 $80 $00 $00 SFF Navy

4 $00 | $80 $80 | SFF | olive I 4 $00 [520 s20 | srr | |

5 s80 | s80 $00 | SFF | Teal B 5 $20_ | 520 $00 | SFE | 77

6 [se0 oo [se0 [oer [purcl —es0 T3 [0 Teer T

7 $80 | 80 $80 | SEF Gray. 8 S1E | $69 $D2 | SFF

8 500 | $45 SFE | SFE | Orange B 9 $13 | 545 588 [522 | sown D

9 $13 | $45 $8B | $FF | Brown A $00 | $00 520 [$FF | parcred |

A 500 | $00 [s20 |$FF | parkred I ||| B 500 | 820 | 500 | 5% | parkareen |

B $00 $20 $00 SFF Dark Green C $40 $00 $00 $FF Blue

c $20 | 500 500 | $FF | indigo I D $10 | 510 $10 | SFF | Midnight Gray

D $20 | $20 520 | SFF | park Gray E $40 | 840 840 | SFF | gjate Gray

E $40 | $40 $40 [SFF | siatecrayMl ||| F SFE | SFF [SFF | SFF | e[]

F SFF SFF SFF | SFE | white

If a character in Screen Page 1 is SED (the default text color combination), then the foreground color index is E and
the background color index is D. Looking up the index for E will make the foreground “Slate Gray” and the
background “Midnight Gray”. The image below shows this color combination in text.

85 Foenix IDE
Eile Windows Reset

Immediate S00 0 CPS

Text Gamma Lookup Table
The Gamma lookup table is used to adjust the color between different display devices (such as DVI versus VGA).

Each of the red, green and blue can be corrected. Each table consists of 256 values.

GAMMA B LUT PTR = $AF:4000
GAMMA G LUT PTR = $AF:4100
GAMMA R LUT PTR = $AF:4200

Gamma can be enabled or disabled.

Master Control Register
The Master Control Register (MCR) is used to enable/disable various video mode. The MCR is located at address

SAF:0000-1. Bits 8 and 9 are only available to Rev C of the Foenix boards (aka FMX).

MCR $AF:0001 MCR (SAF:0000)

9 8 7 6 5 4 3 2 1 0

Pixel Doubling Pixel Clock Disable | Gamma Sprite Tilemap Bitmap Graph Text Text
Vid Mode Overlay Mode
MCR Bit | MCR Name Description
0 Mstr_Ctrl_Text_Mode_En Enable the Text Mode
1 Mstr_Ctrl_Text_Overlay Enable the Overlay of the text mode on top of Graphic Mode (the
Background Color is ignored)

2 Mstr_Ctrl_Graph_Mode_En Enable the Graphic Mode

3 Mstr_Ctrl_Bitmap_En Enable the Bitmap Module in Vicky

4 Mstr_Ctrl_TileMap_En Enable the Tile Module in Vicky

5 Mstr_Ctrl_Sprite_En Enable the Sprite Module in Vicky

6 Mstr_Ctrl_GAMMA_En Enable the GAMMA correction - The Analog and DVI have different
color value, the GAMMA is great to correct the difference.
NOTE: This could also be used for fade-in and out.

7 Mstr_Ctrl_Disable_Vid This bit disables the Scanning of the Video Memory, hence giving
100% bandwidth to the CPU to access graphic data.
NOTE: In this case the Border color or the background is displayed
on the screen (I can't remember) to be advised

8 Mstr Ctrl_Pixel_Clock 0: 25MHz — 640 x 480 maximum resolution
1: 40Mhz — 800 x 600 maximum resolution

9 Mstr_Ctrl_Pixel_Doubling Enable Pixel Doubling (yielding resolutions of 320 x 240 if bit 8 is 0,
and 400 x 300 if bit is 1).

Displaying Graphics
C256 has 4 MB of Video RAM available, starting at $B0:0000 and ending at SEF:FFFF.

The order in which images are drawn are:

e Layer O - Sprite Layer O - Foreground (Closest to the screen)
e layer 1 - Bitmap Layer O
e layer 2 - Sprite Layer 1

e Layer 3 - TileMap Layer O
e layer 4 - Sprite Layer 2

e layer5-TileMap Layer 1
e layer 6 - Sprite Layer 3

e Llayer 7 - TileMap Layer 2
e layer 8 - Sprite Layer 4

e layer 9 -TileMap Layer 3
e layer 10 - Sprite Layer 5
e layer 11 - Bitmap Layer 1

e Layer 12 - Sprite Layer 6 - Background (Farthest from the Screen)

Bitmaps

Once the Bitmap bit is set in the MCR, Vicky will read the Bitmap Control Register(s). Rev B can only display a

single bitmap. Rev C can display two bitmaps and has two registers.

The Bitmap Control Register is shown below.

Bitmap Control Register (SAF:0140) — Rev B
7.4 3.1 0
Reserved LUT Enable
Bitmap Control Register (SAF:0100 and SAF:0108) — Rev C
7.4 3.1 0
Reserved LUT Enable

BCR Bit BCR Name Description

0 Enabled Enable the bitmap

1.3 LUT Lookup Table Index 0 to 7
4.7 Reserved Reserved

The address pointer of the bitmap in the Video RAM is located at addresses SAF:0141 to SAF:0143. The address
stored must be offset by SB0:0000. As an example, if the bitmap data is stored in at address $B1:4000 in memory,
the address pointer must be $01:4000.

The bitmap width is saved in the word SAF:0144 to SAF:0145.
The bitmap height is saved in the word $SAF:0146 to SAF:0147.

Tiles

Position Window X:0, Y:0
Add frame around your window Tile Map X Size
VICKV II - I ILEMAp to account for the scroll Zone

Windows X:0, Y:0

VISUAL SCREEN
Possible Resolutions:
&840x480
320x240
800x&600
400x300

oo}
—
1
5
)
—
1
>
[
=
o
~N
©
—
[}
v

Tile Map Y Size

8 bits for the Tile Number

- Each Tile in the Tile Map is 16bits
3 ’/.’4 Use Negative Scroll To access Use Positive Scroll To access 3 Bits for the Tile Set

Once the Tile bit is set in the MCR, Vicky will retrieve the Tile Control Register at addresses SAF:0100, SAF:0108,
SAF:0110 and $AF:0118 to determine if a tileset should be displayed. There can be four tilesets at any given time
in the display.

The tilemap contain Width * Height 16-bit values

// Active_Tile_Data[7:0] -> Tile Number

// Active_Tile_Data[10:8] -> Tile Attributes // Tile Set
// Active_Tile_Data[13:11] -> Tile Attributes // Tile LUT
// Active_Tile_Data[14] -> TBD

// Active_Tile_Data[15] -> TBD

The Tile Control Registers are shown below.

Tile Control Register (SAF:0100, SAF:0108, $AF:0110, $AF:0118)

7 6.4 3.1 0
Tile Striding Reserved LUT Enable
TCR Bit TCR Name Description
0 Enabled Enable the bitmap
1.3 LUT Lookup Table Index 0 to 7
4.6 Reserved Reserved
7 Tile Striding 0: sequential, 1: 256 x 256 Tile sheet striding
Each tile has its own control register, video address pointer, X and Y stride.
Tile 0 Tile 1 Tile 2 Tile 3
Tile Control Register SAF:0100 SAF:0108 SAF:0110 SAF:0118
Tile Start Address SAF:0101 .. SAF:0103 SAF:0109 .. SAF:010B SAF:0111 .. SAF:0113 SAF:0119 .. SAF:011B
Tile Map X Stride SAF:0104 .. SAF:0105 SAF:010C .. SAF:010E SAF:0114 .. SAF:0115 SAF:011C .. SAF:011E
Tile Map Y Stride SAF:0106 .. SAF:0107 SAF:010E .. SAF:010F SAF:0116 .. SAF:0117 SAF:011E .. SAF:011F

Tile maps are stored at addresses SAF:5000, SAF:5800, SAF:6000 and SAF:6800.

Sprites

Once the Sprite bit is set in the MCR, Vicky will display sprites in the appropriate layer. There can be 32 sprites

displayed for each screen

refresh.

The Sprite Control Registers are shown below.

Sprite Control Register ($AF:0200 to $AF:02F8, offset by 8 bytes)

7

6. 4

3.1

Reserved

Layer

LUT

Enable

Each sprite has a Control Register, a video memory address, and X and Y locations.

Beatrix

BEATRIX Memory

Mapped IO

2one: [$AFEDDO0] - [$AF:FFFF] (not to scale)

[SAFFFFF)

//
//
//
//
//
//

$AF:
$AF:
$AF:
$AF:
$AF:
$AF:

$AF:

E400.
E500.
E600.
E700.
E800.
E820.
E810.

//

Joystick Ports

The C256 Foenix provides 4 joystick ports, located in front of the machine. The 9-pin connectors are compatible

.$AF:
.$AF:
.$AF:
. $AF:
. $AF:
.$AF:

.$AF:

]
.
[
0
U
¢
a]
u
w
]
0
u]

CODEC ADC INPUT FIFO
SDCARD CONTROLLER
OPL2 - BOTH (WRITE)

16M WDC-65CBI6 Accessible Region — Page [$AF]

E4FF
ESFF
E6FF
E7FF
E807
E823
E81F

// SID (Still to be defined) Not Implemented yet

// OPL2 - Left Side

// OPL2 - Right Side

// OPL2 - Both Side (wWrite Sequence Only)

// Joystick + AD Channel + SD Controller

// CODEC Register

//SD Card Stat

[sAF:E000]

with the standard Atari/Commodore joysticks. Joystick ports are number from right to left, starting near the Reset

button.

JOYSTICKO
JOYSTICK1
JOYSTICK2
JOYSTICK3

The joysticks do not generate interrupts.

recommended.

$AF:E800
$AF:ESO1
$AF:E802
$AF:E803

; (R)
; (R)
; (R)
; (R)

Joystick O
Joystick 1
Joystick 2
Joystick 3

J7 (Next to Buzzer)
18

J9

J10 (next to SD Card)

Polling ports at a regular interval, say with the SOF interrupt is

The joystick register has a value at rest of S9F. The bits are set to zero when a switch is closed.

Joystick Register (SAF:E800, SAF: E801, SAF: ES02, SAF: ES803)

5

4

3 2 1 0

Button

N/A

N/A

N/A

Left Right Down Up

Note: This feature is not implemented in the Foenix IDE yet.

Dip switch Ports
DIPSWITCH = $AF:E804 ;(R) $AFE804...$AFE807

Note: This feature is not implemented in the Foenix IDE yet.

SD Card
; SD Card CH376S Port

SDCARD_DATA $AF:E808 ;(R/W) SDCARD (CH376S) Data PORT_A (A0 = 0)

SDCARD_CMD = $AF:E809 ;(R/W) SDCARD (CH376S) CMD/STATUS Port (A0 = 1)
; SD Card Card Presence / Write Protect Status Reg

SDCARD_STAT = $AF:E810 ;(R) SDCARD (Bit[0] = CcD, Bit[1l] = wP)

; Audio WM8776 CODEC Control Interface (Write Only)

CODEC_DATA_LO

$AF:E820 ;(W) LSB of Add/Data Reg to Control CODEC See WM8776 Spec

CODEC_DATA_HI $AF:E821 ;(W) MSB od Add/Data Reg to Control CODEC See WM8776 Spec

CODEC_WR_CTRL $AF:E822 ;(W) Bit[0] = 1 -> Start writing the CODEC Control Register

Note: This feature is not implemented in the Foenix IDE yet.

Communicating with the Machine over the USB Port
The machine has a USB port that allows for easy transfer of data from the C256 IDE directly to the machine.

When sending commands to the machine, an 8-byte array is the minimum length.

e Byte 0: Header = $55

e Byte 1: Command

e Byte 2: Destination Address (H)

e Byte 3: Destination Address (M)

e Byte 4: Destination Address (L)

e Byte 5: Destination Size (H)

e Byte 6: Destination Size (L)

e Byte 7: Checksum — XOR all the previous bytes

The Destination Address and Destination Size only needs to be specified if writing to memory.

Read from Memory Command (S00)

Write to Memory Command ($01)

Program Flash Command ($10)

The command "Program Flash", you need to supply the Pointer in RAM of where the Flash image will be. The
overhead for this one is even longer, each write byte in Flash takes about 20us. So 512K x 20us = 10Sec. So, in
theory, you should have an answer to that command 10 second after sending it, indicating that it is now complete.

Erase Flash Command (511)

Now, the Command "Erase Flash" doesn't have any specific parameters, but the command needs to follow the
same protocol as "Stop CPU" or "Start CPU". The overhead to receive an answer from that command is around
100ms. So, make sure the serial interface can wait that long.

Set Debug Mode Command (S80)
Exit Debug Mode Command ($81)

Get Revision (SFE)

Use this to receive the Debug core version, if you want to make the difference between RevB2 and other revisions.
Value returned:

e S00-RevB2
e 501 - Everything at RevC4A and after (or RevC4 with more features)

Sample Code

Use the VDMA in linear mode to transfer data.

Linear Mode VDMA Transfer

SETUP_VDMA_FOR_TESTING_1D
setas
LDA #$01 ; start Transfer
STA @1VDMA_CONTROL_REG

LDA #$FE
STA @TVDMA_SIZE_L
LDA #$9F
STA @1VDMA_SIZE_M
LDA #$00
STA @1VDMA_SIZE_H

LDA #$64
STA @1VDMA_DST_ADDY_L
LDA #$84
STA @1VDMA_DST_ADDY_M
LDA #$03
STA @1VDMA_DST_ADDY_H

LDA #$55
STA @1VDMA_BYTE_2_WRITE

LDA #$85 ; Start Transfer
STA @1VDMA_CONTROL_REG
LDA @1VDMA_STATUS_REG

RTS

Block Mode VDMA Transfer

SETUP_VDMA_FOR_TESTING_2D
setas

VDMA_WAIT_TF
; wait for the Previous Transfer to be Finished

LDA @1VDMA_STATUS_REG
AND #VDMA_STAT_VDMA_IPS
CMP #VDMA_STAT_VDMA_IPS
BEQ VDMA_WAIT_TF

LDA #$01 ; start Transfer
STA @1VDMA_CONTROL_REG

LDA #200
STA @TVDMA_X_SIZE_L
LDA #00
STA @TVDMA_X_SIZE_H

LDA #64
STA @1VDMA_Y_SIZE_L
LDA #00
STA @1VDMA_Y_SIZE_H

LDA #3%60
STA @1VDMA_DST_ADDY_L
LDA #$90
STA @1VDMA_DST_ADDY_M
LDA #$01
STA @1VDMA_DST_ADDY_H

LDA #$80
STA @1VDMA_DST_STRIDE_L
LDA #$02
STA @1VDMA_DST_STRIDE_H

LDA #$F9
STA @1VDMA_BYTE_2_WRITE

LDA #$87 ; start Transfer
STA @1VDMA_CONTROL_REG
LDA @1VDMA_STATUS_REG

RTS

Clear Screen with VDMA
Code Example of Bitmap ClearScreen with the 2D Mode that happens to work better than the 1D Mode:

CLEAR_BITMAP
setas

CLR_SCREEN_CHECK_NO_ACTIVE_DMA
; wait for the Previous Transfer to be Finished
LDA @1VDMA_STATUS_REG
AND #VDMA_STAT_VDMA_IPS
CMP #VDMA_STAT_VDMA_IPS
BEQ CLR_SCREEN_CHECK_NO_ACTIVE_DMA

LDA #$01 ; Enable VDMA Block
STA @1VDMA_CONTROL_REG

LDA #$80
STA @1VDMA_X_SIZE_L
LDA #$02
STA @1VDMA_X_SIZE_H

LDA #$EO
STA @1VDMA_Y_SIZE_L
LDA #$01
STA @1VDMA_Y_SIZE_H

LDA #$00

STA @1VDMA_DST_ADDY_L
LDA #3500
STA @TVDMA_DST_ADDY_M
LDA #3500
STA @TVDMA_DST_ADDY_H

LDA #$80
STA @1VDMA_DST_STRIDE_L
LDA #$02
STA @1VDMA_DST_STRIDE_H

LDA #$00
STA @1VDMA_BYTE_2_WRITE

LDA #$87 ; start Transfer
STA @1VDMA_CONTROL_REG
LDA @1VDMA_STATUS_REG

RTS

Start of Line Interrupt
Setting up of the SOL:

LDA #$FO0 ; <- video Line value

STA @1VKY_LINEO_CMP_VALUE_LO
LDA #$01 ; Enable Line Interrupt
STA @1VKY_LINE_IRQ_CTRL_REG

Servicing the interrupt:

SOL_INTERRUPT

Interrupt Handler

IRQ_HANDLER

setas

LDA @1INT_PENDING_REGO
AND #FNXO_INTO1_SoL

STA @TINT_PENDING_REGO

; Your Code here

LDA #5300

STA @TBACKGROUND_COLOR_B
RTL

setas ; Set 8bits

SERVICE_NEXT_IRQ1l

; Start of Frame Interrupt
LDA @1INT_PENDING_REGO
AND #FNXO_INTO1_soL

CMP #FNXO_INTO1_sSoOL

BNE SERVICE_NEXT_IRQ6

; Start of Frame Interrupt
JSL SOL_INTERRUPT

BRA EXIT_IRQ_HANDLE

SERVICE_NEXT_IRQ6

EXIT_IRQ_HANDLE

RTI

