PDP-11 for the UKNC

The UKNC is a Russian home computer.

Intended for educational purposes, it's CPUs are a direct copy of the PDP-11 processor.
The UKNC actually uses Two PDP-11 processors, one for the main CPU, one for the 'Peripheral processor'... the CPU runs the main code... the PP handles Keyboard, Disk and graphics - though the main CPU can directly access 2 of the 3 graphics bitplanes (It can't access all 3





Cpu KM181VM2 (PDP-11 Compatible)
Main: 8mhz    PP: 6.25mhz
Ram Main: 64k    PP: 32k
Vram 2k
Resolution up to 640x288 @ 8 colors
Sprites
Tilemap
Colors 4 (2 bitplane) or 8 (4 bitplane) from a palette of 15
Sound chip


Emulator

UKNC BTL - Best (or only) Emulator for the UKNC

ChibiAkumas Tutorials


Useful Documentation

Ansi Escape Codes (VT100 Terminal)

Video Ports

Function
From CPU
From PPU
Select Address
177640 177010
Write Plane 0 (Blue)
(impossible) 177012
Write Plane 1 (Green)
176642 177014
Write Plane 2 (Red)
176643 177015

CPU RAM

From To Purpose
0 157777 RAM
160000 177777 IO


PPU RAM

From To Purpose
0 77777 RAM
100000 117777 RAM Window
120000 176777 ROM
177000 177777 IO

UKNC Color Palette

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

UKNC CPU Ports

60 CH0 IN Interrupt Channel 0
64 CH0 OUT Interrupt Channel 0
460 CH1 IN Interrupt Channel 1
464 CH1 OUT Interrupt Channel 1
474 CH2 OUT Interrupt Channel 2
176000 Windows Register
176000 Window A register
176001 Window B register
176640 Bitplanes address register (RA)
176642 Write Plane 1 (Green) (RD)
176643 Write Plane 2 (Red) (RD)
176660 C1 in STATUS Channel 1
176662 C1 in DATA Channel 1
176664 C1 out STATUS Channel 1
176666 C1 out DATA Channel 1
176674 C2 out STATUS Channel 2
176676 C2 out DATA Channel 2
177560 C0 Console in STATUS Channel 0
177562 C0 Console in DATA Channel 0
177564 C0 Console out STATUS Channel 0
177566 C0 Console out DATA Channel 0

UKNC PP Ports
300 Keyboard interrupt vector
304 Programmable timer interrupt
310 External event interrupt
314 ;RESET on CPU bus interrupt
320 CH0 IN Interrupt Channel 0
324 CH0 OUT Interrupt Channel 1
330 CH1 IN Interrupt Channel 1
334 CH1 OUT Interrupt Channel 2
340 CH2 IN Interrupt Channel 2
177010 Bitplanes address register (RA)
177012 Write Plane 0 (Blue) (RD)
177014 Write Plane 1 (Green) (RD)
177015 Write Plane 2 (Red) (RD)
177016 PPU dots color
177020 PPU bitplanes 0/1 background color
177022 PPU bitplanes 1/2 background color
177024 PPU dots octet
177026 PPU bitplanes mask register
177054 Window (100000-117777)
177060 C0 in DATA Channel 0
177062 C1 in DATA Channel 1
177064 C1 in DATA Channel 2
177066 C0 in STATUS Channel 0
177066 C1 in STATUS Channel 1
177066 C2 in STATUS Channel 2
177070 C0 out DATA Channel 0
177072 C1 out DATA Channel 1
177076 C0 out STATUS Channel 0
177076 C1 out STATUS Channel 1
177320 Joystick "Diana", etc.
177700 Keyboard state register
177702 Keyboard data register
177710 State register DI------        D=Data Waiting (1=Yes) I=Interrupts Enabled(1=on)
177712 Buffer register SKKKKKKK  S=State(0=pressed 1=released)
K=Keycode 0-127 (0-15 when released - parital only)
177714 Current state register
177716 System control register - Bit 7 - Beeper

UKNC RAM and VRAM

The UKNC has 192K total split into 3 banks.

The top 32k is used for VRAM, The top 32k of Bank 0 makes up the 'Blue' bitplane, The top 32k of Bank 1 makes up the 'Green' bitplane, The top 32k of Bank 2 makes up the 'Red' bitplane.

The bottom 32k is used by one of the two CPU's

The 32k of banks 1+2 are combined to make up the 64k ram used by the Main CPU (the one that runs our program)... bytes from Bank 1 are at Even Addresses, Bytes from Bank 2 are at Odd addresses of the Main CPU ram.

The 32k of Bank 0 makes up the 32k Low area of the Peripheral Processor (PP) Sub CPU (the top 32k is rom).

There is no way to 'swap' these ram banks via bankswitching, however the CPU's can access the VRAM, and the Peripheral Processor 'PP' Sub CPU can access the Main CPU's ram via the 'RAP' device.

The RAP device is a third chip which has complete access to all the memory, we select an address with one port, then write data with the other two or three (depending on CPU - the SUB PP CPU can access all 3, the main CPU can access only 2)... this is how we typically write to VRAM.

It is also possible to re-configure the SLTAB line table, and move the visible RAM into an area the CPU's can directly access, however this will reduce the RAM available for other purposes.


Physical addresses and RAP ports

CPU RAP Address select port: 176640
PP  RAP Address select port : 177012


Physical Addresses

Bank 0
Blue VRAM
Bank 1
Green VRAM
Bank 2
Red VRAM
Used for VRAM
by default
177777 177777 177777
...... ...... ......
100001 100001 100001
100000 100000 100000
Used for RAM
by default
077777 077777 077777
...... ...... ......
000001 000001 000001
000000 000000 000000
RAP MAIN CPU Port 
 Impossible 
   176642   
   176643   
RAP PP CPU Port 177012 177014 177015


Main CPU Memory assignment

Bytes from Banks 1+2 make alternate bytes of CPU ram

Main CPU Address RAM
Even Add
RAM
Odd Addr
177776/177777 077777 077777
............. ...... ......
100002/100003 040001 040001
100000/100001 040000 040000
077776/077777 037777 037777
............. ...... ......
000002/000003 000001 000001
000000/000001 000000 000000


Sub CPU PP Memory assignment

Low 32k uses Bank 0 RAM (both odd and even), High 32k uses ROM (both odd and even)

Sub CPU
PP address
ROM
(Odd and Even)
RAM
(Odd and Even)
177776/177777 077776/077777
............. .............
100002/100003 000002/000003
100000/100001 000000/000001
077776/077777
077776/077777
.............
.............
000002/000003
000002/000003
000000/000001
000000/000001

UKNC SLTAB entries

*** Thanks to aberrant_hacker for this information on the UKNC!... he's working on a port of ChibiAkumas to the UKNC... check it out here! ***

The STAB is the line definition table, it starts at address 270, each line has two words, the first is the VRAM address of that line, the second is a pointer to the next line, and a few options... more options can be configured using a 4 word SLTAB definition.

There are 3 types of record, one uses 2 words per record, the other two use 4 words... what record is next is defined by the L and S bits of the previous line.

312 (1..312) lines is SECAM half-frame
309 (1..309) SLTAB records in total (lines 4..312 of SECAM's half-frame)
  scanlines   1..19  are not visible due to the vertical blanking interval
  scanlines  20..307 are visible (lines 23-310 of SECAM's half-frame)
  scanlines 308..309 are not visible due to the vertical blanking interval


F E D C B A 9 8 7 6 5 4 3 2 1 0
2 word
record
V V V V V V V V V V V V V V V V    V=Vram Address
A A A A A A A A A A A A A S L C    C=Toggle Cursor on/off    L=Length of next record (2/4 words)   
   S= 4-word selector (Options/Palette) / 2-word address bit 2    A=Address bits 3-15



F E D C B A 9 8 7 6 5 4 3 2 1 0
4 word
record

Options
- C C C C C C C G G G T Y R G B    YRGB=Cursor color & Brightness / T=Type (Char/Graphic) / G=Graphic Cursor pos / C=Cursor pos
- - - - - - - - - - S S - R G B    RGB= Line Brightness S=Scale (640/320/160/80)
V V V V V V V V V V V V V V V V    V=Vram Address
A A A A A A A A A A A A A S L C    C=Toggle Cursor on/off    L=Length of next record (2/4 words)   
   S= 4-word selector (Options/Palette) / 2-word address bit 2    A=Address bits 3-15



F E D C B A 9 8 7 6 5 4 3 2 1 0
4 word
record

palette
Y R G B Y R G B Y R G B Y R G B    Palette bit combos %011 %010 %001 %001
Y R G B Y R G B Y R G B Y R G B    Palette bit combos %111 %110 %101 %100
V V V V V V V V V V V V V V V V    V=Vram Address
A A A A A A A A A A A A A S L C    C=Toggle Cursor on/off    L=Length of next record (2/4 words)   
   S= 4-word selector (Options/Palette) / 2-word address bit 2    A=Address bits 3-15


UKNC Keyboard Scancodes
We can read the keyboard only from the PPU, The best way is by writing our own Keyboard interrupt handler, and copying it's address to memory address #300 in octal... This will cause it to execute each time a key is pressed or released.

We can then read port 177702 to get the details of the key that was pressed.

Bit 7 will be zero if a key was pressed down... Bits 0-6 will give the full keycode of the key pressed down.

Bit 7 will be 1 if a key was released up... Bits 0-3 will give the partial keycode of the key released - this means it is not possible to 100% uniquely identify the key that was released.
Bits  7 
 6 
 5 
 4 
 3 
 2 
 1 
 0 
KeyDown 0 K K K K K K K
KeyUp 1 0 0 0 K K K K

Octal Decimal Hexadecimal key Details
5 5 05 , NumPad
6 6 06 АР2 Esc
7 7 07 ; / +
10 8 08 К1 / К6 F1 / F6
11 9 09 К2 / К7 F2 / F7
12 10 0A КЗ / К8 F3 / F8
13 11 0B 4 / �
14 12 0C К4 / К9 F4 / F9
15 13 0D К5 / К10 F5 / F10
16 14 0E 7 / '
17 15 0F 8 / (
25 21 15 - NumPad
26 22 16 ТАБ Tab
27 23 17 Й / J
30 24 18 1 / !
31 25 19 2 / "
32 26 1A 3 / #
33 27 1B Е / E
34 28 1C 5 / %
35 29 1D 6 / &
36 30 1E Ш / [
37 31 1F Щ / ]
46 38 26 УПР Ctrl
47 39 27 Ф / F
50 40 28 Ц / C
51 41 29 У / U
52 42 2A К / K
53 43 2B П / P
54 44 2C H / N
55 45 2D Г / G
56 46 2E Л / L
57 47 2F Д / D
66 54 36 ГРАФ Graph
67 55 37 Я / Q
70 56 38 Ы / Y
71 57 39 В / W
72 58 3A А / A
73 59 3B И / I
74 60 3C Р / R
75 61 3D О / O
76 62 3E Б / B
77 63 3F Ю / @
105 69 45 HP Shift
106 70 46 АЛФ CapsLock
107 71 47 ФИКС Lock
110 72 48 Ч / ^
111 73 49 С / S
112 74 4A М / M
113 75 4B SPACE Space
114 76 4C Т / T
115 77 4D Ь / X
116 78 4E Left
117 79 4F , / <
125 85 55 7 NumPad
126 86 56 0 NumPad
127 87 57 1 NumPad
130 88 58 4 NumPad
131 89 59 + NumPad
132 90 5A ЗБ Backspace
133 91 5B Right
134 92 5C Down
135 93 5D . / >
136 94 5E Э / \
137 95 5F Ж / V
145 101 65 8 NumPad
146 102 66 . NumPad
147 103 67 2 NumPad
150 104 68 5 NumPad
151 105 69 ИСП Execute
152 106 6A УСТ Settings
153 107 6B ВВОД Enter
154 108 6C Up
155 109 6D : / *
156 110 6E Х / H
157 111 6F З / Z
165 117 75 9 NumPad
166 118 76 ВВОД NumPad
167 119 77 3 NumPad
170 120 78 6 NumPad
171 121 79 СБРОС Reset
172 122 7A ПОМ Help
173 123 7B / / ?
174 124 7C Ъ / }
175 125 7D - / =
176 126 7E О / }
177 127 7F 9 / )