return to Choose a Color Scheme: Dark
Print Mode

Learn Multi platform 6502 Assembly Programming... For Monsters!

Welcome To the Dark Side!... I grew up with the Amstrad CPC, and I started learning Assembly with the Z80, however as my experience with Z80 assembly grew, I wanted to start learning about other architctures, and see how they compared!

The 6502, and it's varients powered many of the biggest systems from the 80's and 90'... From the ubiquitous C64... to the Nintendo Entertainment System, as well as the BBC Micro, PC-Engine and Atari Lynx... even the Super Nintendo used a 16 bit varient of the 6502 known as the 65816

The 6502's origins are somewhat odd, a cost reduced version of the 8-bit '6800'  (which was the predecessor to the venerable16-bit 68000)... the 6502 sacrificed some functions for a cheaper unit price, which allowed it such wide support... the 6510 which powered the C64 had a few added features...
A later version, the 65C02 added more commands (Used in systems like the Apple IIc and the Atari Lynx) ... and HudsonSoft made a custom version of the 65C02 with even more features, called the HuC6280 and exclusively used in the PC Engine

All these CPU variants are 8 bit, and the basic 6502 command set works in the same way on all these sysems, and it's that instruction set we'll be learning in these tutorials...

These tutorials will be written from the perspective of a Z80 programmer learning 6502, but they will not assume any prior knowledge of Z80, so if you're starting out in assembly, these tutorials will also be fine for you!

In these tutorials we'll start from the absolute basics... and teach you to become a multiplatform 6502 monster!... Let's begin!

the 6502

The 65C02 die

If you want to learn 6502 get the Cheatsheet! it has all the Z80 commands, and useful info on the CPC, Spectrum and MSX!
It will give you a quick reference when you're stuck or confused - and it's what the author used to develop ChibiAkumas!
Print it in color at high resolution on 2 sides of A4 for maximum performance!

Table of Contents
Numbers in assembly
The 6502

Beginners Series - lets learn the basic Z80 commands by example!
    Lesson 1 - Getting started with 6502

Platforms Covered in these tutorials:
Apple IIe
Atari 800 and 5200
Atari Lynx
Commodore 64
Super Nintendo (SNES)
Nintendo Entertainment System / Famicom
PC Engine
Vic 20

Recommended PDF resources:
6502 CPU Manual
6502 Getting started
6502 Tricks

What is the 6502 and what are 8 'bits' You can skip this if you know about binary and Hex (This is a copy of the same section in the Z80 tutorial)
The 6502 is an 8-Bit processor with a 16 bit Address bus!
What's 8 bit... well, one 'Bit' can be 1 or 0
four bits make a Nibble (0-15)
two nibbles (8 bits) make a byte (0-255)
two bytes (16 bits) make a word (0-65535)

And what is 65535? well that's 64 kilobytes ... in computers Kilo is 1024, because four bytes is 1024 bytes
64 kilobytes is the amount of memory a basic 8-bit system can access

6502 is 8 bit so it's best at numbers less than 256... it can do numbers up to 65535 too more slowly... and really big numbers will be much harder to do! - we can design our game round small numbers so these limits aren't a problem.

You probably think 64 kilobytes doesn't sound much when a small game now takes 8 gigabytes, but that's 'cos modern games are sloppy, inefficient,  fat and lazy - like the basement dwelling losers who wrote them!!!
6502 code is small, fast, and super efficient - with ASM you can do things in 1k that will amaze you!

Numbers in Assembly can be represented in different ways.
A 'Nibble' (half a byte) can be represented as Binary (0000-1111) , Decimal (0-15) or  Hexadecimal (0-F)... unfortunately, you'll need to learn all three for programming!

Also a letter can be a number... Capital 'A'  is stored in the computer as number 65!

Think of Hexadecimal as being the number system invented by someone wit h 15 fingers, ABCDEF are just numbers above 9!
Decimal is just the same, it only has 1 and 0.

In this guide, Binary will shown with a % symbol... eg %11001100 ... hexadecimal will be shown with & eg.. &FF.

Assemblers will use a symbol to denote a hexadecimal number, some use $FF or #FF or even 0x, but this guide uses & - as this is how hexadecimal is represented in CPC basic
All the code in this tutorial is designed for compiling with WinApe's assembler - if you're using something else you may need to change a few things!
But remember, whatever compiler you use, while the text based source code may need to be slightly different, the compiled "BYTES' will be the same!
Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... 255
Binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111   11111111
Hexadecimal 0 1 2 3 4 5 6 7 8 9 A B C D E F   FF

Another way to think of binary is think what each digit is 'Worth' ... each digit in a number has it's own value... lets take a look at %11001100 in detail and add up it's total

Bit position 7 6 5 4 3 2 1 0
Digit Value (D) 128 64 32 16 8 4 2 1
Our number (N) 1 1 0 0 1 1 0 0
D x N 128 64 0 0 8 4 0 0
128+64+8+4= 204            So %11001100 = 204 !

If a binary number is small, it may be shown as %11 ... this is the same as %00000011
Also notice in the chart above, each bit has a number, the bit on the far right is no 0, and the far left is 7... don't worry about it now, but you will need it one day!

If you ever get confused, look at Windows Calculator, Switch to 'Programmer Mode' and  it has binary and Hexadecimal view, so you can change numbers from one form to another!
If you're an Excel fan, Look up the functions DEC2BIN and DEC2HEX... Excel has all the commands to you need to convert one thing to the other!

But wait! I said a Byte could go from 0-255 before, well what happens if you add 1 to 255? Well it overflows, and goes back to 0!...  The same happens if we add 2 to 254... if we add 2 to 255, we will end up with 1
this is actually usefull, as if we want to subtract a number, we can use this to work out what number to add to get the effect we want

Negative number -1 -2 -3 -5 -10 -20 -50 -254 -255
Equivalent Byte value 255 254 253 251 246 236 206 2 1
Equivalent Hex Byte Value FF FE FD FB F6 EC CE 2 1

All these number types can be confusing, but don't worry! Your Assembler will do the work for you!
You can type %11111111 ,  &FF , 255  or  -1  ... but the assembler knows these are all the same thing! Type whatever you prefer in your ode and the assembler will work out what that means and put the right data in the compiled code!

The 6502 Registers
Compared to the Z80, the 6502 has a more limited register set...  

The Z80 has Accumulator, 3 pairs of 8 bit regsiters (BC,DE,HL), usable for 16 bit maths and 2 16-bit  indirect registers (IX,IY), it also has a 16 bit Stack pointer, and there are 'Shadow Regsiters' for special purposes

The 6502 is very different, it has an 8 bit Accumulator, two 8 bit  indirect registers (X,Y)  and an 8 bit stack pointer... it also has a 16 bit Program Counter... it has no Shadow Registers

8 Bit 16 Bit Use cases
Accumulator A
Flags F
Indirect X X Preindex register , stack pointer manipulation
Indirect Y Y Postindex register
Stack Pointer SP Stack 
Program Counter PC

    Flags: NV-BDIZC
Name Meaning
N Negative 1=Negative
V Overflow 1=True
- unused
B BRK command
D Decimal mode 1=True
I IRQ disable 1=Disable
Z Zero 1=Result Zero
C Carry 1=Carry

At a glance this may make the 6502 seem significantly inferior to the Z80, however the 6502 has some tricks up it's sleeve!... Where as the fastest command on the Z80 takes 4 ticks, on the 6502 it takes only 1... and the 6502 makes up for it's lack of registers with superior addressing modes!

Special Memory addresses on the 6502
Compared to the Z80, two things are apparent about the 6502... firstly the stack pointer is only 8 bit... and secondly we have very few registers!

The way the Stack pointer works is simple... the stack is always positioned beween $0100 and $01FF...   Where xx is the SP register, the stack pointer will point to $01xx

The 'solution' to the lack of registers is special addressing options... the first 256 bytes between &0000 and &00FF are called the 'Zero Page', and the 6502 has many special functions which allow data in this memory range to be quickly used with the accumulator and other functions as if they were 'registers'!

Note: the PC-Engine has different Zeropage and Stackpointer addresses... and the 65816 can relocate them!... in this case the Zeropage (ZP) is often referred to as the Direct page (DP)
From To Meaning
$0000 $00FF Zero Page (zp)
$0100 $01FF Stack Pointer
$0200 $FFFF Normal memory (and mapped registers)

The 6502 Addressing Modes
The 6502 has 11 different addrssing modes... many have no comparable equivalent on the Z80
Mode Description Sample Command Z80 Equivalent effective result
Implied / Inherant A command that needs no paprameters SEC SEC  (set carry) SCF
Relative A command which uses the program counter PC with and offset nn (-128 to +127) BEQ #$nn BEQ [label] (branch if equal) JR Z,[label]
Accumulator A command which uses the Accumulator as the parameter ROL ROL (ROtate bits Left) RLCA
Immediate A command which takes a byte nn as a parameter ADC #$nn ADC #1 ADC 1 &nn
Absolute Take a parameter from a two byte memory address $nnnn LDA $nnnn LDA $2000 LD a,(&2000) (&nnnn)
Absolute Indexed Take a parameter from a two byte memory address $nnnn+X (or Y) LDA $nnnn,X LDA $2000,X (&nnnn+X)
Zero Page Take a parameter from the zero page address $00nn ADC $nn ADC $32 (&00nn)
Zero Page Indexed Takes a parameter from memory address $00nn+X ADC $nn,X ADC $32,X (&00nn+X)
Indirect Take a parameter from pointer at address $nnnn...
if $nnnn contains $1234 the parameter would come from the address at $1234
JMP ($1000) LD HL,(&1000)
indirect ZP The 65c02 has an extra feature, where it can read from an unindexed Zero page LDA ($80) ((&00nn))
Pre Indexed (Indirect,X) Take a paramenter from pointer at address $nnnn+X
if $nnnn contains $1234, and X contained 4  the parameter would come from the address at $1238
ADC ($nn,X) ADC ($32,X) ((&00nn+X))
Postindexed  (Indirect),Y Take pointer from address $nnnn, add Y... get the parameter from the result
if $nnnn contains $1234, and Y contained 4, the address would be read from $1234... then 4 would be added... and the parameter would be read from ther resulting address
ADC ($nn),Y ADC ($32),Y ((&00nn)+Y)

If we do the comparison
     LDA #val1
     CMP #val2
We can test the result with the following commands

Basic command  Comparison  6502 command  Z80 equivalent  68000 equivalent
if Val2>=Val1 then goto label >= BCS label JP NC,label BGE label
if Val2<Val1 then goto label < BCC label JP C,label BLT label
if Val2=Val1 then goto label = BEQ label JP Z,label BEQ label
if Val2<>Val1 then goto label <> BNE label JP NZ,label BNE  label


Addresses, Numbers and Hex... 6502 notification
We'll be using VASM for our assembler, but most other 6502 assemblers use the same formats... however coming from Z80, they can be a little confusing, so lets make it clear which is which!
Prefix Example Z80 equivalent   Meaning
# #16384 16384 Decimal Number
#% #%00001111 %00001111 Binary Number
#$ #$4000 &4000 Hexadecimal number
#' #'a 'a' ascii value
12345 (16384) decimal memory address
$ $4000 (&4000) Hexadecimal memory address

If you forget the # in a command like ADC #3... you will end up adding from the zeropage address $0003 - and your program will malfunction

With VASM you do not need to put a # where it is always a number, like on jump commands or data declaractions like "DB $3" or "BRA 3"

Low and High Byte
Because the 6502 has no 16 bit registers, it's often nesassary to split an address into its High and Low byte parts, by prefixing a label with < or > it's low or high bytes will be extracted and used in the compiled code, lets take a look!
Symbol Meaning Example Result
< Low Byte #<$1234 #$34
> High Byte #>$1234 #$12

Testing Bits!
In some cases, there are tricks we can do to 'quickly' test a bit!
7 6 5 4 3 2 1 0
anytime ASL A
BPL Dest
AND #32
AND #16
AND #8
AND #4
AND #2
BCC Dest
After a BIT command BPL/BMI Dest BVS/BVC Dest

Important commands that don't exist!
The 6502 lacks some surprisingly common commands that other processors have, but we can 'fake' them with the commands we do have!
Missing command Meaning 6502 alternative
ADD #5 ADD a number without carry CLC (Clear carry for add)
ADC #5 (Clear carry)
SUB #5 Subtract a number without carry SEC (Clear carry for sub)
SBC #5 (Clear carry)
NEG convert positive value in Accumulator  to negative value in Accumulator EOR #255 (XOR/Flip bits)
SEC (Clear carry)
ADD #1  (add 1)
SWAP A Swap two Nibbles in A ASL (shift left - bottom bit zero)
ADC #$80 (pop top bit off)
ROL (shift carry in)
ASL (shift left - bottom bit zero)
ADC #$80 (pop top bit off)
ROL (shift carry in)
BRA r Jump to PC relative location +r
(Use instead of JMP for relocatable code)
CLV Clear Overflow
BVC n Branch if overflow clear
CALL NZ,subroutine Skip over subroutine command if Zero BEQ 3 Skip the JSR command
JSR subroutine Csubroutine to call if nonzero
RET Z Skip over return command if Zero BNE #1 Skip the RET command
RTS Return if zero
PHX / PHY Push X (PHX does exist on 65c02)
(do opposite for PLX)
HALT infinite loop until next Interrupt CLV
BVC -2
LDA (zp) Load a from the address in (zp)
(not needed on 65c02... use LDA (00zp)
(do same for STA etc)
LDX #0
LDA (zp,X)
LDY #0
LDA (zp),Y
If you're used to the Z80, don't go looking for INC A or DEC A on the 6502 ... they don't exist either, so you'll have to CLC, ADD #1 instead!... however they DO exist on the 65C02 and HU6280 as DEA and INA

Shifting without carry
ROL / ROR shift with carry

Use ASL to shift bits left, if you don't want the carry (and bottom bit can be 0)
use LSR to shift bits right without the carry

Skip over parameters 
We may call a subroutine, and pass some parameters, there are two ways we can do this
Using Zeropage Using X (takes 7 more bytes)
    JSR TestSub
    db $11,$22,$33  ;Parameters
    ADC #3+1 ;(parameter bytes+1... so 3+1)
    STA retaddr
    ADC #0
    STA retaddr+1
    JMP (retaddr)
    JSR TestSub
    db $11,$22,$33  ;Parameters
    LDA $0101,X
    ADC #3  ;(parameter bytes... so 3)
    STA $0101,X
    BCC 3  ;Skip over inc command (3 byte cmd)
    INC $0102,X

Pretending we have 16 bit!
We can use Zero page pointers to fake the Z80's 16 bit operations!
INC (inc de) DEC (dec de) ADD (add bc to hl) SUB
        INC z_E
        BNE    IncDE_Done
        INC    z_D
        INC z_E
        BNE    IncDE_Done
        INC    z_D
        lda z_c
        adc z_l
        sta z_l
        lda z_b
        adc z_h
        sta z_h
        lda z_l
        sbc z_c
        sta z_l
        lda z_h
        sbc z_b
        sta z_h
Fast 16 bit loop
    lda (z_hl),y
    bne fontchar_loop
    inc z_hl+1
    bne fontchar_loop

Unlike the Z80, RTS adds 1 to the value on the stack before setting the PC

Status Register bits
7 6 5 4 3 2 1 0
Negative Overflow Unused Break Decimal mode Interrupt state Zero Carry
0=No Overflow
1=BRK occured

Get 16 bits from a Lookup Table

lookup 16 bit value A in [table]
    ASL A
    LDA table,X
    STA destval
    LDA table,X
    STA destval+1
16 bit value is now in destval
   ASL A
(because RET  adds 1 to address - you must subtract 1 from pointers in table)

Lesson 1 - Getting started with 6502
I Learned Assembly on the Z80 systems, and the 6502 seemed strange and scary!... but there's really nothing to worry about, while you have to use it a little bit differently, programming 6502 is no harder than Z80!

Lets start from the basics and learn how to use 6502!

Vasm, Build scripts and Emulators

In these tutorials, we'll be using VASM for our assembly, VASM is free, open source and supports 6502,Z80 and 68000!

We will be testing on various 6502 systems, and you may need to do extra steps (such as adding a header or checksum)... if you download my DevTools, batch files are provided to create the resulting files tested on the emulators used in these tutorials.

My sources will use a symbolic definition to define the platform we're buiilding for, if you use my batch files this will occur automatically, but if you're using your own scripts, you need to define this with an EQU statement.

Here's the platform, symbol I use, and emulators we'll be looking at!

Platform Symbol Definition Required   Emulator used
Apple IIe BuildAP2 equ 1 AppleWin
Atari 5200 BuildA52 equ 1 Jum52
Atari 800 BuildA80 equ1 Atari800win
BBC Micro B BuildBBC equ1 BeebEm
C64 BuildC64 equ1 Vice
Atari Lynx BuildLNX equ 1 Handy
Nintendo NES/Famicom   BuildNES equ 1 Nestopia
PC Engine BuildPCE equ 1 Ootake
Super Nintendo (SNES) BuildSNS equ 1 Snes9x
Vic 20 BuildVIC equ 1 Vice

For these tutorials, I have provided a basic set of include files that will allow us to look at the technicalities of each platform and just worry about the workings of 6502 for now...

We will look at ALL of this code later, in the Platform specific series... but we can't do that until we understand 6502 itself!

The example shown to the right will load the A register with $69 (69 in hexadecimal)

We will then call the 'Monitor' function - which will show the state of the CPU registers to screen!

in this way, whatever the 6502 system you're learning and what emulator you're using, we'll be able to do things in a common way!

The example to the right is split into 3 parts:
The generic header - this will set up the system to a text screen
The program - this is where we do our work
The generic footer - The functions and resources needed for the example to work

It's important to notice all the commands are inset by one tab... otherwise the Assembler will interpret them as labels.
The sample scripts provided with these tutorials will allow us to just look at the commands for the time being... we'll look at the contents of the Header+Footer in another series...

Of course if you want to do everything yourself that's cool... We're lerning the fundamentals of the 6502 - and they will work on any system with that processor... but you'll need to have some other kind of debugger/monitor or other way to view the results of the commands if you're going it alone!... Good luck!

Registers and Numbers
The 6502 has 3 main registers...

A is known as the Accumulator - we use it for all our maths
X and Y are our other 2 registers... we can use them as loop counters, temporary stores, and for special address modes... but we'll look at that later!

Lets learn our first commands... LDA stands for LoaD A... it sets A to a value... we can also do LDX or LDY to load X or Y registers!

Take a look at the example to the right... we're going to load A, X and Y... but notice... we're going to load them in different ways... A will be loaded with #$69... X will be loaded with #69... and Y will be loaded with 69... what will the difference be??
Well here's the result... the values are shown in Hex...
so A=69...  because specifying #$69 tells the assembler to use a HEX VALUE
but X=45...  this is because without the $ the assembler used a Decimal value (45 hex = 69 decimal)
Y=0... why? well when we don't use a # the assembler gets the memory address.... so we read from memory address decimal 00069!... of course we can do $69 or $0069 to read from address hex 0069 too!

So #$xx = hex value  .... #xx = decimal value.... and xx means read from address!

If you forget the # you're code is going to malfunction - as the assembler will use an address rather than a fixed value!

It's an easy mistake to make, and it'll mean your code won't work... so make sure you ALWAYS put a # at the start of fixed values!... or you WILL regret it!

Here are all the 6502 Assembler ways of representing values, and how they will be treated.
Prefix Example Z80 equivalent   Meaning
# #16384 16384 Decimal Number
#% #%00001111 %00001111 Binary Number
#$ #$4000 &4000 Hexadecimal number
#' #'a 'a' ascii value
12345 (16384) decimal memory address
$ $4000 (&4000) Hexadecimal memory address

What's this JSR thing?... Jump to SubRoutine!

We've been using this JSR command... but what does it do?

Well JSR jumps to a subroutine... in this case JSR monitor will run the 'monitor' debugging subroutine... when the subroutine is done, the processor runs the next command

In this case that command is 'JMP *' which tricks the 6502 into an infinite loop!

JSR in 6502 is the equivalent of GOSUB in basic or CALL in z80.... we'll look at how to make our own subroutine in a later lesson!
JMP is a jump command ... and * is a special command that means 'the current line' to the assembler... so 'JMP *' means jump to this line...

This causes the 6502 to jump back to the start of the line... so it ends up running the jump command forever!... it's an easy way to stop the program for testing!

Adding and subtracting

The 6502 is a cut down version of the 6800... and would you believe it, one of the things they removed was the ADD and SUBtract commands!... so how can we do maths? well they did leave us some other commands... ADC and SBC... these add and subtract a value plus the 'Carry'....

The Carry is a single bit which is the overflow from a previous calculation... you see, in 8 bit maths you can't go over 255... so if you set A=255, then add 1... then A will become Zero, but the Carry will be 1... effectively the Carry is the 9th bit!

Don't worry if you don't understand that now... the important thing is we need to deal with the carry before we try to add or subtract with ADC and SBC!

Note... there is no way to add or subtract with X or Y... you have to store to memory, and use a command like ADC $0013.... which would ADD the 8 bit value in memory address $0013

In this example, we're going to set A to Hex 15... then we'll show it by calling the Monitor
then we'll add 1... and show it again with the monitor
then we'll subtract 1... and show it again with the monitor

We don't want the Carry affecting things so we have to CLear the Carry with CLC before the ADC command...

However strangely if we don't want the Carry to affect subtraction, we have to SEt the Carry with SEC... before the SBC command - this is the opposite of the z80 command, but it's just the way the 6502 does things!
Here is the result... you can see we go from 15, to 16, then back to 15!

Moving data between registers

We know how to set all the registers, but what if we have a value in one register, and we want to transfer it to another...
Well, we can use TAX and TAY to Transfer A to X...or Transfer A to Y!

We can also use TXA or TYA to Transfer X to A... or Transfer Y to A!

What if we want to transfer X to Y? (or Y to X) ... well we can't directly, so we'd have to do TXA... then  TAY
You can see the result here... First we set A to $25 and Y to $34 - the result is shown on the first line
Then we transfer A to X... and Y to A... the result is shown on the second line.

Storing back to memory!
Remember we learned that using LDA with a number without a # means it will load from that numbered address? - so LDA $13 will LoaD A from hex address $0013?
Well we can also STore A with the STA command!... we can also STore X with STX, or Store Y with STY!

In this example we'll use STA to store some values to memory addresses $0011 and $0012

We'll then set the Accumulator to $13 and add these two memory addresses to the accumulator.... finally we'll use STA again to store the result to memory address $0013

When it comes to showing the result, we'll use another debugging subroutine I wrote called MemDump... this will dump a few lines of data to the screen... in this case we'll show 3 lines (of 8 bytes) from memory address $0000-$0018... In this example, we'll show the memory before, and after we do the writes.

* Warning * If you're not using my sample code, these commands may overwrite system variables - and cause something strange to happen!
Here's the result of the programm running... you can see the bytes $11, $22 and $66 were written... these are the two values stored at the start... and then the result of these two added to the $33 loaded into the accumulator

Want to try something else?? Why not change CLC to SEC and  ADC to SBC... and see what happens!

The first 256 bytes of memory $0000-$00FF are special on the 6502... in fact there's a lot we're not mentioning about reading and writing memory... but it's coming soom!

Also the memory from $0100-$01FF is also special... it's used by the stack!... don't know what that is? don't worry... we'll come to that!
Be Careful writing to memory on different systems... This example may not work write on some systems...
The PC-Engine is weird... unlike every 6502... the range $0000-$01FF is NOT memory... that area is at $2000-$21FF
Why? because it's not actually a 6502... its a HuC6280... it's almost the same as a 6502... but it has some extras and weirdness!

Lesson 2 - Addressing modes on the 6502
The 6502 has very few registers - but it makes up for this with a mind boggling number of addressing modes!

You won't need them all at first, but you should at least understand what they all do - lets see some examples of how they work!

Lets try them all out with some simple examples!
In order to run these examples we're going to need to set up some areas of memory, by filling them with test values.

The code to the right will do the work (via a Function called LDIR - which copies memory areas)... don't worry how it works for now, it's too complex at this time!

Here is the rest of the Chunk copying code, and the data copied... again, you don't need to worry about this for now.
Prepearation... the result...
Here is the important bit... THIS is the data as it appears in memory when the program runs... you may want to refer back to this if you wish!

Note: These tutorials will not work on all systems... for example most will not work on the PC engine, because the zero page is not at &0000!
They may also not work on the NES or SNES, because the &2000 area has a special purpose on those systems.

They have all been tested on the BBC.... but don't worry... the theory shown here is based on the principals of the 6502 - so will work on ANY 6502 based system!
We're all set up now... lets try out all the addressing options... we'll look at the theory, and an example program... then we'll see the result in the registers in a screenshot from the BBC version
We'll be reading in all these examples... but many of the commands can be used for other commands.. please see the Cheatsheet for more details.

1.Relative Addressing
Relative Addressing is where execution (the program counter) jumps to a position relative to the current address - it can be 127 bytes after the calling line, or 128 bytes before....

This means the code will be 'relocatable' - we can move it in memory and it will still work, but we can't jump more than 128 bytes!

There are all kinds of 'Branch' commands... here we've used 'Branch if Carry Clear'... we'll look at the others in a later lesson

BCC ALWAYS takes a fixed number (not an address), so we don't have to use # with BCC in vasm!... that said, we can just use labels (names that appear at the far left, and let the assembler work out the maths.

Take a look at the example to the right... there are 3 Monitor commands... but only 2 show on the screen... this is because the BCC skips over one

The "Program Counter" (shown as P) stores the byte of the end of the last command.... A "JSR Monitor" takes 3 bytes, "BCC 3" takes 2... hopefully the numbers the program counter shows will now make sense if you add up the commands!

2.Accumulator Addressing
Accumulator addressing sounds more complex than it is!

Effectively it's a command with no parameters - it just changes the accumulator in some way....
For Example LSR shifts the bits to the left... don't worry if you don't understand it, we'll look at it later!

3.Immediate Addressing

Again, Immediate sound scary... but it's really easy... it's just a simple number in the code, specified with a #
As we've already learned... we can use # followed by $ to sepcify a hexadecimal number.
In this example we will add Hex 10 and Hex 20... the result is obviously 30!

Why not try using different numbers,remove the $ to stop using hexadecimal..., or SBC... don't forget to change CLC to SEC if you do!

4.Zero Page
The Zero Page is the 6502's special trick... addresses between $0000 and $00FF are called the 'Zero Page'... these can be stored as a single byte... so $FF would refer to address $00FF

Because the address is stored as a single byte - it's fast, and the Zero page can do things that other addresses cannot!

The 6502 uses this 'zero page' like a bank of 255 registers - allowing the 6502 with it's just 3 registers to do the things the Z80 did with over a dozen!
In this example we'll load from zero page address $80.... note that if we did LDA #$80 then we would load the Value $80 not from the address...

This is important - you don't want to make that mistake (too often!)

The Zero Page (Sometimes called the Direct Page - usually when it's not at $0000) is effectively the 'tepmporary store' for all the data we can't get into the A,X and Y registers...

We can use different numbered addresses for

5. Zero Page Indexed X (or Y with LDX / STX) Addressing
When we specify ,X or ,Y after an address it becomes an offset... the register is added to the address in the zero page... and the value is retrieved from the resulting address...

Note - you typically have to use X for this addressing mode... however LDX and STX are as special case, and we can use Y because we can't use X if it's the source or destination of the command

Note... LDA $20,Y is not a valid command... however the assembler will covert it to LDA $0020,Y which IS... but it takes an extra byte, so is not as efficient!
As you can see here we're using the Zero Page, and X and Y register....

take a look at the values we wrote to the Zero Page at the start, and try changing X,Y and the source location ($80) to other values.

6. Absolute Addressing
Of course we can't always read and write in the zero page... we'll want to specify the whole address... this takes an extra byte - so the command will be 3 bytes total and is slower, but we can get data from the whole 64k range ($0000-$FFFF)
Absolute addressing is good for variables we're not storing in the zero page (often most of the Zero page is used by the firmware!)... but isn't very good for reading in lots of data (like sprite images)... for that we want indirect addressing - which we'll look at soon!

7. Absolute Indexed Addressing With X,Y
When we want to read from multiple addresses, we can used Indexed addressing... this adds X or Y to an address - so we can change X/Y to read in from a range using a Loop!... we'll learn how to do a loop very soon!

$xxxx,Y can be used with many commands, but $xxxx,X has more options... check out the cheatsheet for more info!
Changing X and Y allow you to change the source address without changing the LDA line.... we'll learn how to do this in loops and functions later.

8. Absolute Indirect
We can directly read a 16-bit value from another 16-bit address ($0000-$FFFF) In one special... the JuMP command (for all other cases we need to use the zero page.
This can be used to reprogram parts of your progam - allowing alternate routines to be 'switched' in.
In this example we use ($2000)... this loads in two bytes $1B1A and then jumps to that address (sets the PC to 1B1A)...

Our setup put a "JSR MONITOR" at this address... so we see the contents of the registers... notice P (the program counter) is $1B1C... the last byte of the 3 byte "JSR MONITOR" command

9. Preindexed Indirect Addressing with X 
Pre-inxexed Indirect with X regsiter uses the ZeroPage... X is added to the ZeroPage.... the two consecutive bytes are read in from the zero page, and these are used as an address... a byte is read from that address... Note... the data is stored in 'Little Endian' format... meaning the lower value byte comes first

This is all very cofusing!... but think of it like this... two bytes of the zeropage are a 'temporary address' pointing to the actual data we will read

We can use these to simulate 'Z80 registers'...  by setting one as an L register for the low byte, and the next as the H register for the high byte....
This is how we get around the 6502's lack of registers!... don't worry about it if you don't understand yet... we'll see this a lot later!

In this example we've got X set to 1... so we end up loading a byte from the address made up of bytes at $0081 and $0082 - remember they are in reverse order because it's little endian!

we then show the result to screen.... of course setting X to 0... and changing $80 to $81 would have the same effect.

10. Postindexed Indirect Addressing with Y 
Post-Indexed with the Y register also use the Zero Page... two concecutive bytes are read in from the Zero page to make an address... but the Y register is then added to THAT address... and the final value is read from the resulting address.

With this option, Effectively, if we store an address in the Zero page... we can use Y as a counter and read from consecutive addresses... we can use this in a loop - we'll learn how to do that later
Y is 2 in this example, so 2 is added to the address in ZeroPage ($0080-$0081)... if we change Y then the final address will change by the same amount

11. Indirect Addressing (65c02 only)
This is a special mode only available on 65c02 used by the Lynx, Snes, PcEngine and Apple II....
Effectively it's the same as Preindexed when X=0... or PostIndexed when Y=0... this is how we can simulate this addressing mode if we need to do this on the other machines!
It uses a pair of bytes in the Zero page as an address, and uses that address for the result
It would be nice to have this mode on the other CPU's, but we don't... however we can simulate it!

to fake it on other machines we set X=0 then use LDA ($81,X)
or we set Y=0 and then use LDA ($81),Y

You won't see much '65c02 only' code in these tutorials - so all the code will work on all systems, we only use the basic 6502 commands

Of course you're free to use them if you wish, just remember - it will mean you can't port your code to another system as easily!

Lesson 3 - Loops and Conditions
We've had a breif introduction to 6502, and now we understand the Addressing modes we can look properly at 6502

Some overlooked fundamentals!

We've been cheating a little, we've overlooked a few important commands - they're hidden in the header, but we really need to know them!... before we start the proper lesson, lets look at them now!

We're going to need to know ALL the details of assembly to create a working program, and something have been hidden until now! but we need to ensure we know everything.

ORG and Labels - Positioning data in memory

Because we're compiling to a 8-bit cpu with a 16-bit address bus, our compiled code filles maps to a fixed address within the memory space... this is important, because while branch commands like BCC are an 'offset'... JMP commands will 'Jump' to a specific numbered address

to the right, you can see how the code will compile - this is the 'Listing.txt' file, showing the source code and the resulting binary output.

The SEI command is compiled to the byte $78 - this is the command as the CPU sees it... because of the ORG command, the code is compiled to the address $0200...

Using Labels

We also have a Label...  Labels must be at the far left of the screen... all other commands must be inset

n this example, the label will be defined as address $0200 - so if we use it in a Jump command (hex $4C) , it will be compiled to that address (in reverse endian - so $0200 becomes $00 $02)

SEI - Disabling interrupts
Interrupts are where the CPU does other tasks whenever it wants!

For simplicity at this stage, we want to stop that, so we use SEI to "Set the Interrupt Mask"

Don't worry about interrupts yet, we'll look at them later... so for now we just need to know how to turn them off

Symbol definitions
Symbols are similar to labels... they allow us to give 'name' (like TestSym) a 'Value' ... rather than using the value later, we can just use the symbol... Using symbols makes it easy for us to program, as we can use explainatory text rather than meaningless numbers.

 the assembler will convert the symbol name to its original value... we just use EQU to define the definition... in the example once assembled LDA converts to byte $A5... and TestSym has a value of $69

In VASM, like labels, symbol definitions  must be at the far left of the screen

There will be frequent times when we need to increase and decrease values by just 1
For the X or Y registers we can do this with INX and DEX
We can increase values in the ZeroPage by using INC $01 or DEC $01

rather annoyingly there is no INC or DEC command on the 6502... so we have to simulate it, by clearing the carry, and adding one (CLC, ADC #1)

Here you can see the results of the program...

The first thee lines show the status of the registers at each stage.... and we can see how A,X and Y are affected by each stage of the program

The lower half shows the zero page - and we can see how $01 goes up and down as we do INC and DEC commands

Branch on condition
Branches allow us to do things depending on a condition... we can use this to create a loop!
Because we don't have a DEC command for the accumulator, it's often easier to use X or Y as a loop counter.
if we use DEX to decrement the counter, and BNE will jump back until the counter reaches zero... note that BNE needs to be immediately after the decrement command as other commands may alter the Z flag

There are a wide variety of Branch commands for different condition codes.
Command Meaning Literal Meaning Description
BCC Branch if Carry Clear flag C=1 Is there any carry caused by last command?*
BCS Branch if Carry Set flag C=0 Is there any carry caused by last command?*
BEQ Branch if Equal flag Z=1 Is the result of the last command zero?
BMI Branch if Minus flag S=1 Is the result of the last command <128
BNE Branch if Not Equal flag Z=0 Is the result of the last command zero?
BPL Branch if Plus flag S=0 Is the result of the last command >=128
BVC Branch if Overflow Clear flag V=0 Is there any overflow caused by there last command?*
BVS Branch if Overflow Set flag V=1 Is there any overflow caused by there last command?*

If a previous addition command caused a value over 255 then Carry will be set... Overflow is a bit odd... it's affected if Addition/Subtraction goes over the 128 boundary (if it changes from positive to negative) it's also set by BIT commands

Comparing to another value with CMP, CPX and CPY
If you don't want to see if a register is zero, you can compare to a different value with CMP... then perform one of the commands.... effectively, CMP 'simulates' a subtraction

Basic command  Comparison  6502 command  Z80 equivalent  68000 equivalent
if Val2>=Val1 then goto label >= BCS label JP NC,label BGE label
if Val2<Val1 then goto label < BCC label JP C,label BLT label
if Val2=Val1 then goto label = BEQ label JP Z,label BEQ label
if Val2<>Val1 then goto label <> BNE label JP NZ,label BNE  label

Conditional Jumping far away with JMP, or calling a subroutine with JSR
Branch commands are pretty limited, they can only jump 128 bytes away, if you try to jump further you will get an error
If you need to jump further, or you want to use JSR with a condition you have to do things backwards!.... jump OVER the JSR or JMP command if the condition is NOT met

For example... if you want to call the Monitor if X=2... then you have to use a branch command to jump OVER the call if X is not 2...
The result is that the monitor is called only when X=2... we've faked a 'Jump to SubRoutine on Equal' command... we can also do the same with a JMP to get further than 128 bytes away!

Using BVC to simulate BRA
JMP jumps to a specific memory address, where as BEQ and other branch commands jump to a relative position...
There may be cases where you want to write code that can be relocated... copied to a new memory address and still executable... JMP will not work in this case, but branch will...

the 65c02 has a BRA command for this purpose (branch always)... but the 6502 does not... we can however simulate it by clearing the rarely used overflow with CLV, then using BVC

Don't worry if you don't see any reason to do this - you may never need to! if you don't know why you'd need relocatable code - then you don't need it!

Multiple conditions for a Case statement
It's important to understand that ALL other languages convert to assembly... so anything Basic or C++ can do can be done in ASM!

We can chain multiple branches together to create 'If Then ElseIf' commands or even create 'Case' Statements in assembly, just by chaining multiple branch commands together.
The result will be the program will branch out to each of the subsections depending on X


Learn Assembly for the Greatest Classic Processors:  Z80 - 6502 - 68000
Visit to get my games and their source code! | Support me on patreon